The Influence of ENSO Flavors on Western North Pacific Tropical Cyclone Activity

Christina M. Patricola Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Search for other papers by Christina M. Patricola in
Current site
Google Scholar
PubMed
Close
,
Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Suzana J. Camargo in
Current site
Google Scholar
PubMed
Close
,
Philip J. Klotzbach Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Philip J. Klotzbach in
Current site
Google Scholar
PubMed
Close
,
R. Saravanan Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by R. Saravanan in
Current site
Google Scholar
PubMed
Close
, and
Ping Chang Department of Oceanography and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, and Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is a major source of seasonal western North Pacific (WNP) tropical cyclone (TC) predictability. However, the spatial characteristics of ENSO have changed in recent decades, from warming more typically in the eastern equatorial Pacific during canonical or cold tongue El Niño to warming more typically in the central equatorial Pacific during noncanonical or warm pool El Niño. We investigated the response in basinwide WNP TC activity and spatial clustering of TC tracks to the location and magnitude of El Niño using observations, TC-permitting tropical channel model simulations, and a TC track clustering methodology. We found that simulated western North Pacific TC activity, including accumulated cyclone energy (ACE) and the number of typhoons and intense typhoons, is more effectively enhanced by sea surface temperature warming of the central, compared to the eastern, equatorial Pacific. El Niño also considerably influenced simulated TC tracks regionally, with a decrease in TCs that were generated near the Asian continent and an increase in clusters that were dominated by TC genesis in the southeastern WNP. This response corresponds with the spatial pattern of reduced vertical wind shear and is most effectively driven by central Pacific SST warming. Finally, internal atmospheric variability generated a substantial range in the simulated season total ACE (±25% of the median). However, extremely active WNP seasons were linked with El Niño, rather than internal atmospheric variability, in both observations and climate model simulations.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0678.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christina M. Patricola, cmpatricola@lbl.gov

Abstract

El Niño–Southern Oscillation (ENSO) is a major source of seasonal western North Pacific (WNP) tropical cyclone (TC) predictability. However, the spatial characteristics of ENSO have changed in recent decades, from warming more typically in the eastern equatorial Pacific during canonical or cold tongue El Niño to warming more typically in the central equatorial Pacific during noncanonical or warm pool El Niño. We investigated the response in basinwide WNP TC activity and spatial clustering of TC tracks to the location and magnitude of El Niño using observations, TC-permitting tropical channel model simulations, and a TC track clustering methodology. We found that simulated western North Pacific TC activity, including accumulated cyclone energy (ACE) and the number of typhoons and intense typhoons, is more effectively enhanced by sea surface temperature warming of the central, compared to the eastern, equatorial Pacific. El Niño also considerably influenced simulated TC tracks regionally, with a decrease in TCs that were generated near the Asian continent and an increase in clusters that were dominated by TC genesis in the southeastern WNP. This response corresponds with the spatial pattern of reduced vertical wind shear and is most effectively driven by central Pacific SST warming. Finally, internal atmospheric variability generated a substantial range in the simulated season total ACE (±25% of the median). However, extremely active WNP seasons were linked with El Niño, rather than internal atmospheric variability, in both observations and climate model simulations.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0678.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Christina M. Patricola, cmpatricola@lbl.gov

Supplementary Materials

    • Supplemental Materials (DOCX 473.06 KB)
Save
  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 28852901, https://doi.org/10.1175/2010JCLI3205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and Coauthors, 2000: Climate assessment for 1999. Bull. Amer. Meteor. Soc., 81 (6), S1S50, https://doi.org/10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boudreault, M., L.-P. Caron, and S. J. Camargo, 2017: Reanalysis of climate influences on Atlantic tropical cyclone activity using cluster analysis. J. Geophys. Res. Atmos., 122, 42584280, https://doi.org/10.1002/2016JD026103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bove, M. C., J. B. Elsner, C. W. Landsea, X. Niu, and J. J. O’Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, https://doi.org/10.1175/1520-0477(1998)079<2477:EOENOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2016: Tropical cyclones, western North Pacific basin [in “State of the Climate in 2015”]. Bull. Amer. Meteor. Soc., 97 (8), S110S114, https://doi.org/10.1175/2016BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and S. E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Wea. Forecasting, 17, 11521162, https://doi.org/10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 29963006, https://doi.org/10.1175/JCLI3457.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., and A. A. Wing, 2016: Tropical cyclones in climate models. Wiley Interdiscip. Rev.: Climate Change, 7, 211237, https://doi.org/10.1002/wcc.373.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007a: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 36353653, https://doi.org/10.1175/JCLI4188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007b: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 36543676, https://doi.org/10.1175/JCLI4203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007c: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, https://doi.org/10.1175/JCLI4282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., A. W. Robertson, A. G. Barnston, and M. Ghil, 2008: Clustering of eastern North Pacific tropical cyclone tracks: ENSO and MJO effects. Geochem. Geophys. Geosyst., 9, Q06V05, https://doi.org/10.1029/2007GC001861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015a: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., Y.-G. Ham, A. Wittenberg, and J.-S. Kug, 2015b: Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Variations, No. 13, U.S. CLIVAR Project Office, Washington, DC, 21–25.

    • Search Google Scholar
    • Export Citation
  • Caron, L.-P., M. Boudreault, and S. J. Camargo, 2015: On the variability and predictability of eastern North Pacific tropical cyclone activity. J. Climate, 28, 96789696, https://doi.org/10.1175/JCLI-D-15-0377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599606, https://doi.org/10.1175/1520-0493(1985)113<0599:TCAITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 29602972, https://doi.org/10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteor. Atmos. Phys., 89, 143152, https://doi.org/10.1007/s00703-005-0126-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and C. K. M. Yip, 2003: Interannual variations of tropical cyclone size over the western North Pacific. Geophys. Res. Lett., 30, 2267, https://doi.org/10.1029/2003GL018522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., J. L. McBride, K. J. Tory, M. C. Wheeler, and K. J. E. Walsh, 2013: Impact of different ENSO regimes on southwest Pacific tropical cyclones. J. Climate, 26, 600608, https://doi.org/10.1175/JCLI-D-12-00114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chand, S. S., K. J. Tory, H. Ye, and K. J. E. Walsh, 2017: Projected increase in El Niño-driven tropical cyclone frequency in the Pacific. Nat. Climate Change, 7, 123127, https://doi.org/10.1038/nclimate3181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, G., and C.-Y. Tam, 2010: Different impacts of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett., 37, L01803, https://doi.org/10.1029/2009GL041708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., S.-P. Weng, N. Yamazaki, and S. Kiehne, 1998: Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Wea. Rev., 126, 10801090, https://doi.org/10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chia, H.-H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 29342944, https://doi.org/10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945–2000. NRL Tech. Rep. NRL/MR/7540-02-16, 22 pp.

  • Chu, P.-S., 2004: ENSO and tropical cyclone activity. Hurricanes and Typhoons: Past, Present, and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 297–332.

  • Colbert, A. J., B. J. Soden, and B. P. Kirtman, 2015: The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Climate, 28, 18061823, https://doi.org/10.1175/JCLI-D-14-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daloz, A. S., and Coauthors, 2015: Cluster analysis of explicitly and downscaled simulated North Atlantic tropical cyclone tracks. J. Climate, 28, 13331361, https://doi.org/10.1175/JCLI-D-13-00646.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaffney, S. J., 2004: Probabilistic curve-aligned clustering and prediction with regression mixture models. Ph.D. dissertation, University of California, Irvine, 281 pp.

  • Gaffney, S. J., A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil, 2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423440, https://doi.org/10.1007/s00382-007-0235-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 16491668, https://doi.org/10.1175/1520-0493(1984)112<1649:ASHFPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., and S. Nigam, 2008: Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Climate, 21, 27902809, https://doi.org/10.1175/2007JCLI2076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, R., and Coauthors, 2016: An assessment of multimodel simulations for the variability of western North Pacific tropical cyclones and its association with ENSO. J. Climate, 29, 64016423, https://doi.org/10.1175/JCLI-D-15-0720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., Y.-H. Li, T. Li, and M.-Y. Lee, 2011: Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys. Res. Lett., 38, L16712, https://doi.org/10.1029/2011GL048821.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horn, M., and Coauthors, 2014: Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Climate, 27, 91979213, https://doi.org/10.1175/JCLI-D-14-00200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jien, J. Y., W. A. Gough, and K. Butler, 2015: The influence of El Niño–Southern Oscillation on tropical cyclone activity in the eastern North Pacific basin. J. Climate, 28, 24592474, https://doi.org/10.1175/JCLI-D-14-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C.-S., C.-H. Ho, J.-H. Kim, D.-K. Lee, D.-H. Cha, and S.-W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in more frequent tropical cyclone movements toward East Asia. J. Climate, 26, 25342545, https://doi.org/10.1175/JCLI-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., J. Boucharel, and I.-I. Lin, 2014: Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat. Nature, 516, 8285, https://doi.org/10.1038/nature13958.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kao, H.-Y, and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615632, https://doi.org/10.1175/2008JCLI2309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841985, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., P. J. Webster, and J. A. Curry, 2011: Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Climate, 24, 18391849, https://doi.org/10.1175/2010JCLI3939.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J.-S., S. T. Kim, L. Wang, X. Wang, and Y.-I. Moon, 2016: Tropical cyclone activity in the northwestern Pacific associated with decaying central Pacific El Niños. Stochastic Environ. Res. Risk Assess., 30, 13351345, https://doi.org/10.1007/s00477-016-1256-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S. T., and J.-Y. Yu, 2012: The two types of ENSO in CMIP5 models. Geophys. Res. Lett., 39, L11704, https://doi.org/10.1029/2012GL052006.

  • Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Amer. Meteor. Soc., 91, 363376, https://doi.org/10.1175/2009BAMS2755.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., S. J. Camargo, and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, https://doi.org/10.1175/2010JCLI3497.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 57255739, https://doi.org/10.1175/JCLI-D-16-0076.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozar, M. E., M. E. Mann, S. J. Camargo, J. P. Kossin, and J. L. Evans, 2012: Stratified statistical models of North Atlantic basin-wide and regional tropical cyclone counts. J. Geophys. Res., 117, D18103, https://doi.org/10.1029/2011JD017170.

    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño Events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603, https://doi.org/10.1029/2010GL044007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and C. Wang, 2014: Simulated impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific: Large-scale atmospheric response. Climate Dyn., 42, 27272743, https://doi.org/10.1007/s00382-013-1999-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, T., M. Kwon, M. Zhao, J.-S. Kug, J.-J. Luo, and W. Yu, 2010:Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, https://doi.org/10.1029/2010GL045124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., S.-P. Xie, M. Zhao, and Y. Wang, 2015: Forced and internal variability of tropical cyclone track density in the western North Pacific. J. Climate, 28, 143167, https://doi.org/10.1175/JCLI-D-14-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and Coauthors, 2013: Hindcast prediction and near-future projection of tropical cyclone activity over the western North Pacific using CMIP5 near-term experiments with MIROC. J. Meteor. Soc. Japan, 91, 431452, https://doi.org/10.2151/jmsj.2013-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, and A. Kitoh, 2011: Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Climate, 24, 11541169, https://doi.org/10.1175/2010JCLI3723.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, https://doi.org/10.1175/JCLI-D-11-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., B. Wang, T. Li, and A. Kitoh, 2013: Projected increase in tropical cyclones near Hawaii. Nat. Climate Change, 3, 749754, https://doi.org/10.1038/nclimate1890.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. A. Vecchi, T. L. Delworth, K. Paffendorf, L. Jia, R. Gudgel, and F. Zeng, 2015a: Investigating the influence of anthropogenic forcing and natural variability on the 2014 Hawaiian hurricane season [in “Explaining Extreme Events of 2014 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 96 (12), S115S119, https://doi.org/10.1175/BAMS-D-15-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015b: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, https://doi.org/10.1175/JCLI-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, J., and Coauthors, 2017: Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos., 122, 97219744, https://doi.org/10.1002/2017JD027007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., and B. Guan, 2011: Atlantic tropical cyclones in the 20th century: Natural variability and secular change in cyclone count. Climate Dyn., 36, 22792293, https://doi.org/10.1007/s00382-010-0908-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., P. Chang, and R. Saravanan, 2016: Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nat. Geosci., 9, 155160, https://doi.org/10.1038/ngeo2624.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patricola, C. M., R. Saravanan, and P. Chang, 2017: A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones. Geophys. Res. Lett., 44, 11671174, https://doi.org/10.1002/2016GL071965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Jr., and C. W. Landsea, 1999: La Niña, El Niño, and Atlantic hurricane damages in the United States. Bull. Amer. Meteor. Soc., 80, 20272033, https://doi.org/10.1175/1520-0477(1999)080<2027:LNAENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, T. U., and W. A. Gough, 2009: The influence of sea surface temperature on eastern North Pacific tropical cyclone activity. Theor. Appl. Climatol., 95, 257264, https://doi.org/10.1007/s00704-008-0004-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramsay, H. A., S. J. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Climate Dyn., 39, 897917, https://doi.org/10.1007/s00382-011-1225-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., 2015: Climate model biases in the eastern tropical oceans: Causes, impacts and ways forward. Wiley Interdisp. Rev: Climate Change, 6, 345358, https://doi.org/10.1002/wcc.338.

    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2015: Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models. J. Climate, 28, 574596, https://doi.org/10.1175/JCLI-D-14-00131.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., http://dx.doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Smirnov, D., and D. J. Vimont, 2012: Extratropical forcing of tropical Atlantic variability during the boreal summer and fall. J. Climate, 25, 20562076, https://doi.org/10.1175/JCLI-D-11-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. R., J. Brolley, J. J. O’Brien, and C. A. Tartaglione, 2007: ENSO’s impact on regional U.S. hurricane activity. J. Climate, 20, 14041414, https://doi.org/10.1175/JCLI4063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., S. J. Camargo, A. G. Barnston, and M. K. Tippett, 2016: Northern Hemisphere tropical cyclones during the quasi-El Niño of late 2014. Nat. Hazards, 83, 17171729, https://doi.org/10.1007/s11069-016-2389-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38, L10704, https://doi.org/10.1029/2011GL047364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, K., 1997: Objective detection of tropical cyclones in high-resolution analyses. Mon. Wea. Rev., 125, 17671779, https://doi.org/10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Li, M. Mu, and W. Duan, 2013: Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Climate Dyn., 40, 28872902, https://doi.org/10.1007/s00382-012-1434-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitney, L. D., and J. S. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 29212930, https://doi.org/10.1175/1520-0442(1997)010<2921:TRBSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., and Coauthors, 2014: Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model. J. Climate, 27, 34053424, https://doi.org/10.1175/JCLI-D-12-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., H. Zhang, J.-M. Chen, and T. Feng, 2018: Impact of two types of El Niño on tropical cyclones over the western North Pacific: Sensitivity to location and intensity of Pacific warming. J. Climate, 31, 17251742, https://doi.org/10.1175/JCLI-D-17-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M. C., W. L. Chang, and W. M. Leung, 2004: Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Climate, 17, 14191428, https://doi.org/10.1175/1520-0442(2004)017<1419:IOENOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, S., and F. Huang, 2015: Impacts of the two types of El Niño on Pacific tropical cyclone activity. J. Ocean Univ. China, 14, 191198, https://doi.org/10.1007/s11802-015-2421-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, S.-W., J.-S. Kug, B. Dewitte, M.-H. Kwon, B. P. Kirtman, and F.-F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511514, https://doi.org/10.1038/nature08316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yokoi, S., Y. N. Takayabu, and H. Murakami, 2013: Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Climate, 26, 40964111, https://doi.org/10.1175/JCLI-D-12-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G., Z. Wang, T. J. Dunkerton, M. S. Peng, and G. Magnusdottir, 2016: Extratropical impacts on Atlantic tropical cyclone activity. J. Atmos. Sci., 73, 14011418, https://doi.org/10.1175/JAS-D-15-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., H.-F. Graf, Y. Leung, and M. Herzog, 2012: Different El Niño types and tropical cyclone landfall in East Asia. J. Climate, 25, 65106523, https://doi.org/10.1175/JCLI-D-11-00488.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., Y. Leung, and K. Fraedrich, 2015: Different El Niño types and intense typhoons in the western North Pacific. Climate Dyn., 44, 29652977, https://doi.org/10.1007/s00382-014-2446-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., 2016: A downscaling technique to simulate changes in western North Pacific tropical cyclone activity between two types of El Niño events. Theor. Appl. Climatol., 123, 487501, https://doi.org/10.1007/s00704-015-1374-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., and I. M. Held, 2012: TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Climate, 25, 29953009, https://doi.org/10.1175/JCLI-D-11-00313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, Z.-W., I.-I. Lin, B. Wang, H.-C. Huang, and C.-H. Chen, 2015: A long neglected damper in the El Niño–typhoon relationship: A ‘Gaia-like’ process. Sci. Rep., 5, 11103, https://doi.org/10.1038/srep11103.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and Coauthors, 2016: Challenges and Prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bull. Amer. Meteor. Soc., 97, 23052328, https://doi.org/10.1175/BAMS-D-15-00274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2641 990 114
PDF Downloads 1858 287 36