Preconditioning of Arctic Stratospheric Polar Vortex Shift Events

Jinlong Huang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jinlong Huang in
Current site
Google Scholar
PubMed
Close
,
Wenshou Tian Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Wenshou Tian in
Current site
Google Scholar
PubMed
Close
,
Lesley J. Gray National Centre for Atmospheric Science, Physics Department, University of Oxford, Oxford, United Kingdom

Search for other papers by Lesley J. Gray in
Current site
Google Scholar
PubMed
Close
,
Jiankai Zhang Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiankai Zhang in
Current site
Google Scholar
PubMed
Close
,
Yan Li Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Yan Li in
Current site
Google Scholar
PubMed
Close
,
Jiali Luo Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Jiali Luo in
Current site
Google Scholar
PubMed
Close
, and
Hongying Tian Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Search for other papers by Hongying Tian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the preconditioning of events in which the Arctic stratospheric polar vortex shifts toward Eurasia (EUR events), North America (NA events), and the Atlantic (ATL events) using composite analysis. An increase in blocking days over northern Europe and a decrease in blocking days over the Bering Strait favor the movement of the vortex toward Eurasia, while the opposite changes in blocking days over those regions favor the movement of the vortex toward North America. An increase in blocking days over the eastern North Atlantic and a decrease in blocking days over the Bering Strait are conducive to movement of the stratospheric polar vortex toward the Atlantic. These anomalous precursor blocking patterns are interpreted in terms of the anomalous zonal wave-1 or wave-2 planetary wave fluxes into the stratosphere that are known to influence the vortex position and strength. In addition, the polar vortex shift events are further classified into events with small and large polar vortex deformation, since the two types of events are likely to have a different impact at the surface. A significant difference in the zonal wave-2 heat flux into the lower stratosphere exists prior to the two types of events and this is linked to anomalous blocking patterns. This study further defines three types of tropospheric blocking events in which the spatial patterns of blocking frequency anomalies are similar to the blocking patterns prior to EUR, NA, and ATL events, respectively, and our reanalysis reveals that the polar vortex is indeed more likely to shift toward Eurasia, North America, and the Atlantic in the presence of the above three defined tropospheric blocking events. These shifts of the polar vortex toward Eurasia, North America, and the Atlantic lead to statistically significant negative height anomalies near the tropopause and corresponding surface cooling anomalies over these three regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0695.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenshou Tian, wstian@lzu.edu.cn

Abstract

This study examines the preconditioning of events in which the Arctic stratospheric polar vortex shifts toward Eurasia (EUR events), North America (NA events), and the Atlantic (ATL events) using composite analysis. An increase in blocking days over northern Europe and a decrease in blocking days over the Bering Strait favor the movement of the vortex toward Eurasia, while the opposite changes in blocking days over those regions favor the movement of the vortex toward North America. An increase in blocking days over the eastern North Atlantic and a decrease in blocking days over the Bering Strait are conducive to movement of the stratospheric polar vortex toward the Atlantic. These anomalous precursor blocking patterns are interpreted in terms of the anomalous zonal wave-1 or wave-2 planetary wave fluxes into the stratosphere that are known to influence the vortex position and strength. In addition, the polar vortex shift events are further classified into events with small and large polar vortex deformation, since the two types of events are likely to have a different impact at the surface. A significant difference in the zonal wave-2 heat flux into the lower stratosphere exists prior to the two types of events and this is linked to anomalous blocking patterns. This study further defines three types of tropospheric blocking events in which the spatial patterns of blocking frequency anomalies are similar to the blocking patterns prior to EUR, NA, and ATL events, respectively, and our reanalysis reveals that the polar vortex is indeed more likely to shift toward Eurasia, North America, and the Atlantic in the presence of the above three defined tropospheric blocking events. These shifts of the polar vortex toward Eurasia, North America, and the Atlantic lead to statistically significant negative height anomalies near the tropopause and corresponding surface cooling anomalies over these three regions.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0695.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Wenshou Tian, wstian@lzu.edu.cn

Supplementary Materials

    • Supplemental Materials (DOCX 5.25 MB)
Save
  • Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, https://doi.org/10.1175/JAS-D-14-0026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., and M. E. McIntyre, 1976: Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci., 33, 20312048, https://doi.org/10.1175/1520-0469(1976)033<2031:PWIHAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Attard, H. E., R. Rios-Berrios, C. T. Guastini, and A. L. Lang, 2016: Tropospheric and stratospheric precursors to the January 2013 sudden stratospheric warming. Mon. Wea. Rev., 144, 13211339, https://doi.org/10.1175/MWR-D-15-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30 93730 946, https://doi.org/10.1029/1999JD900445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bancalá, S., K. Krüger, and M. Giorgetta, 2012: The preconditioning of major sudden stratospheric warmings. J. Geophys. Res., 117, D04101, https://doi.org/10.1029/2011JD016769.

    • Search Google Scholar
    • Export Citation
  • Bao, M., X. Tan, D. L. Hartmann, and P. Ceppi, 2017: Classifying the tropospheric precursor patterns of sudden stratospheric warmings. Geophys. Res. Lett., 44, 80118016, https://doi.org/10.1002/2017GL074611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barriopedro, D., and N. Calvo, 2014: On the relationship between ENSO, stratospheric sudden warmings, and blocking. J. Climate, 27, 47044720, https://doi.org/10.1175/JCLI-D-13-00770.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cámara, A. D. L., J. R. Albers, T. Birner, R. R. Garcia, P. Hitchcock, D. E. Kinnison, and A. K. Smith, 2017: Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci., 74, 28572877, https://doi.org/10.1175/JAS-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and D. Barriopedro, 2010: Dynamical connection between tropospheric blockings and stratospheric polar vortex. Geophys. Res. Lett., 37, L13809, https://doi.org/10.1029/2010GL043819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlton, A. J., and L. M. Polvani, 2007: A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20, 449469, https://doi.org/10.1175/JCLI3996.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and C. Fletcher, 2007: Improved skill of Northern Hemisphere winter surface temperature predictions based on land–atmosphere fall anomalies. J. Climate, 20, 41184132, https://doi.org/10.1175/JCLI4241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., and B. Tan, 2016: The western Pacific pattern precursor of major stratospheric sudden warmings and the ENSO modulation. Environ. Res. Lett., 11, 124032, https://doi.org/10.1088/1748-9326/aa538a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, S. Gualdi, and A. Navarra, 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 64966509, https://doi.org/10.1175/JCLI-D-12-00032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davini, P., C. Cagnazzo, and J. A. Anstey, 2014: A blocking view of the stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 119, 11 10011 115, https://doi.org/10.1002/2014JD021703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ERA-Interim project. National Center for Atmospheric Research Computational and Information Systems Laboratory Research Data Archive, accessed 13 May 2017, https://doi.org/10.5065/D6CR5RD9.

    • Crossref
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2008: Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res., 113, D18114, https://doi.org/10.1029/2008JD009920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., S.-W. Son, K. Song, V. Aquila, and L. D. Oman, 2017: Stratospheric variability contributed to and sustained the recent hiatus in Eurasian winter warming. Geophys. Res. Lett., 44, 374382, https://doi.org/10.1002/2016GL072035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and P. H. Haynes, 2016: Stratospheric control of planetary waves. Geophys. Res. Lett., 43, 11 88411 892, https://doi.org/10.1002/2016GL071372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., W. Tian, J. Zhang, Q. Huang, H. Tian, and J. Luo, 2017: The connection between extreme stratospheric polar vortex events and tropospheric blockings. Quart. J. Roy. Meteor. Soc., 143, 11481164, https://doi.org/10.1002/qj.3001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iza, M., and N. Calvo, 2015: Role of stratospheric sudden warmings on the response to central Pacific El Niño. Geophys. Res. Lett., 42, 24822489, https://doi.org/10.1002/2014GL062935.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, https://doi.org/10.1038/ncomms5646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., and A. J. Charlton-Perez, 2011: Observed and simulated precursors of stratospheric polar vortex anomalies in the Northern Hemisphere. Climate Dyn., 37, 14431456, https://doi.org/10.1007/s00382-010-0919-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. Breiteig, and A. A. Scaife, 2010: The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere. Quart. J. Roy. Meteor. Soc., 136, 886893, https://doi.org/10.1002/qj.620.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuroda, Y., 2008: Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate. J. Geophys. Res., 113, D15110, https://doi.org/10.1029/2007JD009550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Tian, 2017: Different impact of central Pacific and eastern Pacific El Niño on the duration of sudden stratospheric warming. Adv. Atmos. Sci., 34, 771782, https://doi.org/10.1007/s00376-017-6286-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Tian, F. Xie, Z. Wen, J. Zhang, D. Hu, and Y. Han, 2018: The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events. Climate Dyn., https://doi.org/10.1007/s00382-017-3942-0, in press.

    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 25842596, https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res., 110, D24101, https://doi.org/10.1029/2005JD006302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S.-W. Son, 2013: Planetary-scale wave activity as a source of varying tropospheric response to stratospheric sudden warming events: A case study. J. Geophys. Res. Atmos., 118, 10 99411 006, https://doi.org/10.1002/jgrd.50871.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martineau, P., and S.-W. Son, 2015: Onset of circulation anomalies during stratospheric vortex weakening events: The role of planetary-scale waves. J. Climate, 28, 73477370, https://doi.org/10.1175/JCLI-D-14-00478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martius, O., L. M. Polvani, and H. C. Davies, 2009: Blocking precursors to stratospheric sudden warming events. Geophys. Res. Lett., 36, L14806, https://doi.org/10.1029/2009GL038776.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1970: Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci., 27, 871883, https://doi.org/10.1175/1520-0469(1970)027<0871:VPOSPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., and J. G. Esler, 2011: Stratospheric sudden warmings as self-tuning resonances. Part I: Vortex splitting events. J. Atmos. Sci., 68, 24812504, https://doi.org/10.1175/JAS-D-11-07.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthewman, N. J., J. G. Esler, A. J. Charlton-Perez, and L. M. Polvani, 2009: A new look at stratospheric sudden warmings. Part III: Polar vortex evolution and vertical structure. J. Climate, 22, 15661585, https://doi.org/10.1175/2008JCLI2365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maycock, A. C., and P. Hitchcock, 2015: Do split and displacement sudden stratospheric warmings have different annular mode signatures? Geophys. Res. Lett., 42, 10 94310 951, https://doi.org/10.1002/2015GL066754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., L. J. Gray, J. Anstey, M. P. Baldwin, and A. J. Charlton-Perez, 2013: The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26, 26682682, https://doi.org/10.1175/JCLI-D-12-00030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morris, G. A., and Coauthors, 1995: Trajectory mapping and applications to data from the Upper Atmosphere Research Satellite. J. Geophys. Res., 100, 16 49116 505, https://doi.org/10.1029/95JD01072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mukougawa, H., and T. Hirooka, 2004: Predictability of stratospheric sudden warming: A case study for 1998/99 winter. Mon. Wea. Rev., 132, 17641776, https://doi.org/10.1175/1520-0493(2004)132<1764:POSSWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101, 94719478, https://doi.org/10.1029/96JD00066.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nath, D., W. Chen, C. Zelin, A. I. Pogoreltsev, and K. Wei, 2016: Dynamics of 2013 sudden stratospheric warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection. Sci. Rep., 6, 24174, https://doi.org/10.1038/srep24174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2010: Cooling of the wintertime Arctic stratosphere induced by the western Pacific teleconnection pattern. Geophys. Res. Lett., 37, L13805, https://doi.org/10.1029/2010GL043551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and Y. J. Orsolini, 2011: Geographical dependence observed in blocking high influence on the stratospheric variability through enhancement and suppression of upward planetary-wave propagation. J. Climate, 24, 64086423, https://doi.org/10.1175/JCLI-D-10-05021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1985: On the three-dimensional propagation of stationary waves. J. Atmos. Sci., 42, 217229, https:/doi.org/10.1175/1520-0469(1985)042,0217:OTTDPO.2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., and D. W. Waugh, 2004: Upward wave activity flux as a precursor to extreme stratospheric events and subsequent anomalous surface weather regimes. J. Climate, 17, 35483554, https://doi.org/10.1175/1520-0442(2004)017<3548:UWAFAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, https://doi.org/10.1175/JCLI-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiroz, R. S., 1986: The association of stratospheric warmings with tropospheric blocking. J. Geophys. Res., 91, 52775285, https://doi.org/10.1029/JD091iD04p05277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, R. K., and L. M. Polvani, 2004: Stratospheric control of upward wave flux near the tropopause. Geophys. Res. Lett., 31, L02115, https://doi.org/10.1029/2003GL017965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., 2017: Weakening and shift of the Arctic stratospheric polar vortex: Internal variability or forced response? Geophys. Res. Lett., 44, 33653373, https://doi.org/10.1002/2017GL073071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., D. M. Mitchell, and L. J. Gray, 2013: A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40, 52685273, https://doi.org/10.1002/grl.50927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., L. J. Gray, and D. M. Mitchell, 2016: Stratospheric polar vortex splits and displacements in the high-top CMIP5 climate models. J. Geophys. Res. Atmos., 121, 14001413, https://doi.org/10.1002/2015JD024178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. L., C. G. Fletcher, and P. J. Kushner, 2010: The role of linear interference in the annular mode response to extratropical surface forcing. J. Climate, 23, 60366050, https://doi.org/10.1175/2010JCLI3606.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, M., and D. L. Hartmann, 2006: Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19, 324332, https://doi.org/10.1175/JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 14211428, https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and Coauthors, 2016: Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Mon. Wea. Rev., 144, 19351960, https://doi.org/10.1175/MWR-D-15-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc., 97, 22632273, https://doi.org/10.1175/BAMS-D-15-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., A. Charlton-Perez, S. Ineson, A. G. Marshall, and G. Masato, 2010: Associations between stratospheric variability and tropospheric blocking. J. Geophys. Res., 115, D06108, https://doi.org/10.1029/2009JD012742.

    • Search Google Scholar
    • Export Citation
  • Xie, F., and Coauthors, 2016: A connection from Arctic stratospheric ozone to El Niño-Southern Oscillation. Environ. Res. Lett., 11, 124026, https://doi.org/10.1088/1748-9326/11/12/124026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., W. Tian, M. P. Chipperfield, F. Xie, and J. Huang, 2016: Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nat. Climate Change, 6, 10941099, https://doi.org/10.1038/nclimate3136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2018: Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift. Nat. Commun., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., and H. von Storch, 1995: Taking serial correlation into account in tests of the mean. J. Climate, 8, 336351, https://doi.org/10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 827 221 15
PDF Downloads 978 191 14