Global Assessment of the Standardized Evapotranspiration Deficit Index (SEDI) for Drought Analysis and Monitoring

Sergio M. Vicente-Serrano Instituto Pirenaico de Ecología, Spanish National Research Council, Zaragoza, Spain

Search for other papers by Sergio M. Vicente-Serrano in
Current site
Google Scholar
PubMed
Close
,
Diego G. Miralles Ghent University, Ghent, Belgium

Search for other papers by Diego G. Miralles in
Current site
Google Scholar
PubMed
Close
,
Fernando Domínguez-Castro Instituto Pirenaico de Ecología, Spanish National Research Council, Zaragoza, Spain

Search for other papers by Fernando Domínguez-Castro in
Current site
Google Scholar
PubMed
Close
,
Cesar Azorin-Molina Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Search for other papers by Cesar Azorin-Molina in
Current site
Google Scholar
PubMed
Close
,
Ahmed El Kenawy Instituto Pirenaico de Ecología, Spanish National Research Council, Zaragoza, Spain
Department of Geography, Mansoura University, Mansoura, Egypt

Search for other papers by Ahmed El Kenawy in
Current site
Google Scholar
PubMed
Close
,
Tim R. McVicar CSIRO Land and Water, Canberra, Australian Capital Territory, Australia
Australian Research Council Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales, Australia

Search for other papers by Tim R. McVicar in
Current site
Google Scholar
PubMed
Close
,
Miquel Tomás-Burguera Estación Experimental de Aula Dei, Spanish National Research Council, Zaragoza, Spain

Search for other papers by Miquel Tomás-Burguera in
Current site
Google Scholar
PubMed
Close
,
Santiago Beguería Estación Experimental de Aula Dei, Spanish National Research Council, Zaragoza, Spain

Search for other papers by Santiago Beguería in
Current site
Google Scholar
PubMed
Close
,
Marco Maneta Department of Geosciences, University of Montana, Missoula, Montana

Search for other papers by Marco Maneta in
Current site
Google Scholar
PubMed
Close
, and
Marina Peña-Gallardo Instituto Pirenaico de Ecología, Spanish National Research Council, Zaragoza, Spain

Search for other papers by Marina Peña-Gallardo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article developed and implemented a new methodology for calculating the standardized evapotranspiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit (ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the AED method used for calculation, with the exception of winter months and boreal regions. The SEDI showed significant correlations (p < 0.05) with the standardized precipitation evapotranspiration index (SPEI) across a wide range of regions, particularly for short (<3 month) SPEI time scales. This work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0775.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergio M. Vicente-Serrano, svicen@ipe.csic.es

Abstract

This article developed and implemented a new methodology for calculating the standardized evapotranspiration deficit index (SEDI) globally based on the log-logistic distribution to fit the evaporation deficit (ED), the difference between actual evapotranspiration (ETa) and atmospheric evaporative demand (AED). Our findings demonstrate that, regardless of the AED dataset used, a log-logistic distribution most optimally fitted the ED time series. As such, in many regions across the terrestrial globe, the SEDI is insensitive to the AED method used for calculation, with the exception of winter months and boreal regions. The SEDI showed significant correlations (p < 0.05) with the standardized precipitation evapotranspiration index (SPEI) across a wide range of regions, particularly for short (<3 month) SPEI time scales. This work provides a robust approach for calculating spatially and temporally comparable SEDI estimates, regardless of the climate region and land surface conditions, and it assesses the performance and the applicability of the SEDI to quantify drought severity across varying crop and natural vegetation areas.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0775.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sergio M. Vicente-Serrano, svicen@ipe.csic.es

Supplementary Materials

    • Supplemental Materials (PDF 914.32 KB)
Save
  • Abramowitz, M., and I. A. Stegun, 1965: Handbook of Mathematical Functions. Dover Publications, 1046 pp.

  • Allen, C. D., D. D. Breshears, and N. G. McDowell, 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 129, https://doi.org/10.1890/ES15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. Food and Agricultural Organization Irrigation and Drainage Paper 56, 300 pp., http://www.fao.org/docrep/X0490E/X0490E00.htm.

  • Allen, R. G., M. Tasumi, and R. Trezza, 2007: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model. J. Irrig. Drain. Eng., 133, 380394, https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderegg, L. D. L., W. R. L. Anderegg, J. Abatzoglou, A. M. Hausladen, and J. A. Berry, 2013: Drought characteristics’ role in widespread aspen forest mortality across Colorado, USA. Global Change Biol., 19, 15261537, https://doi.org/10.1111/gcb.12146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderegg, W. R. L., A. Flint, C.-Y. Huang, L. Flint, J. A. Berry, F. W. Davis, J. S. Sperry, and C. B. Field, 2015: Tree mortality predicted from drought-induced vascular damage. Nat. Geosci., 8, 367371, https://doi.org/10.1038/ngeo2400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Climate, 24, 20252044, https://doi.org/10.1175/2010JCLI3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antwi-Agyei, P., E. D. G. Fraser, A. J. Dougill, L. C. Stringer, and E. Simelton, 2012: Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl. Geogr., 32, 324334, https://doi.org/10.1016/j.apgeog.2011.06.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Asseng, S., and Coauthors, 2015: Rising temperatures reduce global wheat production. Nat. Climate Change, 5, 143147, https://doi.org/10.1038/nclimate2470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barker, L. J., J. Hannaford, A. Chiverton, and C. Svensson, 2016: From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci., 20, 24832505, https://doi.org/10.5194/hess-20-2483-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E., T. R. McVicar, A. I. J. M. van Dijk, J. Schellekens, R. A. M. de Jeu, and L. A. Bruijnzeel, 2011: Global evaluation of four AVHRR-NDVI data-sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ., 115, 25472563, https://doi.org/10.1016/j.rse.2011.05.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorre, 2014: Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol., 34, 30013023, https://doi.org/10.1002/joc.3887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bouchet, R. J., 1963: Evapotranspiration réelle evapotranspiration potentielle, signification climatique. IAHS Publ., 62, 134142.

  • Breshears, D. D., H. D. Adams, D. Eamus, M. G. McDowell, D. J. Law, R. E. Will, A. P. Williams, and C. B. Zou, 2013: The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci., 4, 266, https://doi.org/10.3389/fpls.2013.00266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brümmer, C., and Coauthors, 2012: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteor., 153, 1430, https://doi.org/10.1016/j.agrformet.2011.04.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1948: Evaporation under Natural Conditions. Gidrometeoizdat, 136 pp.

  • Chaves, M. M., J. P. Maroco, and J. S. Pereira, 2003: Understanding plant responses to drought—From genes to the whole plant. Funct. Plant Biol., 30, 239264, https://doi.org/10.1071/FP02076.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T., G. Xia, T. Liu, W. Chen, and D. Chi, 2016: Assessment of drought impact on main cereal crops using a standardized precipitation evapotranspiration index in Liaoning Province, China. Sustainability, 8, 1069, https://doi.org/10.3390/su8101069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choat, B., and Coauthors, 2012: Global convergence in the vulnerability of forests to drought. Nature, 491, 752755, https://doi.org/10.1038/nature11688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciais, P., and Coauthors, 2005: Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529533, https://doi.org/10.1038/nature03972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., T. R. McVicar, and M. L. Roderick, 2010: Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J. Hydrol., 386, 186197, https://doi.org/10.1016/j.jhydrol.2010.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohue, R. J., and Coauthors, 2014: Evaluation of the remote-sensing-based DIFFUSE model for estimating photosynthesis of vegetation. Remote Sens. Environ., 155, 349365, https://doi.org/10.1016/j.rse.2014.09.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duncan, J., D. Stow, J. Franklin, and A. Hope, 1993: Assessing the relationship between spectral vegetation indices and shrub cover in the Jordana Basin, New Mexico. Int. J. Remote Sens., 14, 33953416, https://doi.org/10.1080/01431169308904454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Espadafor, M., I. J. Lorite, P. Gavilán, and J. Berengena, 2011: An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in southern Spain. Agric. Water Manage., 98, 10451061, https://doi.org/10.1016/j.agwat.2011.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., K. P. Tu, and D. D. Baldocchi, 2008: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ., 112, 901919, https://doi.org/10.1016/j.rse.2007.06.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., R. J. Whittaker, and Y. Malhi, 2011: ET come home: Potential evapotranspiration in geographical ecology. Global Ecol. Biogeogr., 20, 118, https://doi.org/10.1111/j.1466-8238.2010.00578.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisher, J. B., and Coauthors, 2017: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res., 53, 26182626, https://doi.org/10.1002/2016WR020175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gash, J. H. C., 1979: An analytical model of rainfall interception by forests. Quart. J. Roy. Meteor. Soc., 105, 4355, https://doi.org/10.1002/qj.49710544304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillies, R. R., W. P. Kustas, and K. S. Humes, 1997: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface radiant temperature. Int. J. Remote Sens., 18, 31453166, https://doi.org/10.1080/014311697217026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwood, S., and Coauthors, 2017: Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett., 20, 539553, https://doi.org/10.1111/ele.12748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutman, G. G., 1991: Vegetation indices from AVHRR: An update and future prospects. Remote Sens. Environ., 35, 121136, https://doi.org/10.1016/0034-4257(91)90005-Q.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., 1999: Accepting the standardized precipitation index: A calculation algorithm. J. Amer. Water Resour. Assoc., 35, 311322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hobbins, M. T., A. Wood, D. J. McEvoy, J. L. Huntington, C. Morton, M. Anderson, and C. Hain, 2016: The evaporative demand drought index. Part I: Linking drought evolution to variations in evaporative demand. J. Hydrometeor., 17, 17451761, https://doi.org/10.1175/JHM-D-15-0121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., 1990: L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Stat. Soc. 52B, 105124.

    • Search Google Scholar
    • Export Citation
  • Ji, L., and A. J. Peters, 2003: Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ., 87, 8598, https://doi.org/10.1016/S0034-4257(03)00174-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katerji, N., and G. Rana, 2011: Crop reference evapotranspiration: A discussion of the concept, analysis of the process and validation. Water Resour. Manage., 25, 15811600, https://doi.org/10.1007/s11269-010-9762-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keyantash, J., and J. A. Dracup, 2002: The quantification of drought: An evaluation of drought indices. Bull. Amer. Meteor. Soc., 83, 11671180, https://doi.org/10.1175/1520-0477-83.8.1167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and J. Rhee, 2016: A drought index based on actual evapotranspiration from the Bouchet hypothesis. Geophys. Res. Lett., 43, 10 27710 285, https://doi.org/10.1002/2016GL070302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kogan, F. N., 1997: Global drought watch from space. Bull. Amer. Meteor. Soc., 78, 621636, https://doi.org/10.1175/1520-0477(1997)078<0621:GDWFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Labudová, L., M. Labuda, and A. Takáč , 2017: Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian lowland and the east Slovakian lowland. Theor. Appl. Climatol., 128, 491506, https://doi.org/10.1007/s00704-016-1870-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leuning, R., 1995: A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ., 18, 339335, https://doi.org/10.1111/j.1365-3040.1995.tb00370.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and F. N. Kogan, 1996: Monitoring regional drought using the vegetation condition index. Int. J. Remote Sens., 17, 27612782, https://doi.org/10.1080/01431169608949106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd-Hughes, B., 2014: The impracticality of a universal drought definition. Theor. Appl. Climatol., 117, 607611, https://doi.org/10.1007/s00704-013-1025-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lobell, D. B., M. Bänziger, C. Magorokosho, and B. Vivek, 2011: Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Climate Change, 1, 4245, https://doi.org/10.1038/nclimate1043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Moreno, J. I., S. M. Vicente-Serrano, J. Zabalza, S. Beguería, J. Lorenzo-Lacruz, C. Azorin-Molina, and E. Morán-Tejeda, 2013: Hydrological response to climate variability at different time scales: A study in the Ebro basin. J. Hydrol., 477, 175188, https://doi.org/10.1016/j.jhydrol.2012.11.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenzo-Lacruz, J., S. M. Vicente-Serrano, J. C. González-Hidalgo, J. I. López-Moreno, and N. Cortesi, 2013: Hydrological drought response to meteorological drought at various time scales in the Iberian Peninsula. Climate Res., 58, 117131, https://doi.org/10.3354/cr01177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, M., L. Ren, F. Yuan, S. Jiang, Y. Liu, H. Kong, and L. Gong, 2014: A new standardized Palmer drought index for hydro-meteorological use. Hydrol. Processes, 28, 56455661, https://doi.org/10.1002/hyp.10063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martens, B., and Coauthors, 2017: GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10, 19031925, https://doi.org/10.5194/gmd-10-1903-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood, 2016: The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geosci. Model Dev., 9, 283305, https://doi.org/10.5194/gmd-9-283-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, M. F., and Coauthors, 2017: The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci., 21, 38793914, https://doi.org/10.5194/hess-21-3879-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDowell, N., and Coauthors, 2008: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol., 178, 719739, https://doi.org/10.1111/j.1469-8137.2008.02436.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., J. L. Huntington, J. T. Abatzoglou, and L. M. Edwards, 2012: An evaluation of multiscalar drought indices in Nevada and eastern California. Earth Interact., 16, https://doi.org/10.1175/2012EI000447.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., J. L. Huntington, M. T. Hobbins, A. Wood, C. Morton, M. Anderson, and C. Hain, 2016a: The evaporative demand drought index. Part II: CONUS-wide assessment against common drought indicators. J. Hydrometeor., 17, 17631779, https://doi.org/10.1175/JHM-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McEvoy, D. J., J. L. Huntington, J. F. Mejia, and M. T. Hobbins, 2016b: Improved seasonal drought forecasts using reference evapotranspiration anomalies. Geophys. Res. Lett., 43, 377385, https://doi.org/10.1002/2015GL067009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc, 179–184.

  • McVicar, T. R., and D. L. B. Jupp, 1998: The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia: A review. Agric. Syst., 57, 399468, https://doi.org/10.1016/S0308-521X(98)00026-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., T. G. Van Niel, L. T. Li, M. L. Roderick, D. P. Rayner, L. Ricciardulli, and R. J. Donohue, 2008: Wind speed climatology and trends for Australia, 1975–2006: Capturing the stilling phenomenon and comparison with near-surface reanalysis output. Geophys. Res. Lett., 35, L20403, https://doi.org/10.1029/2008GL035627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., M. L. Roderick, R. J. Donohue, and T. G. Van Niel, 2012a: Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology, 5, 381388, https://doi.org/10.1002/eco.1298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McVicar, T. R., and Coauthors, 2012b: Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol., 416–417, 182205, https://doi.org/10.1016/j.jhydrol.2011.10.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michel, D., and Coauthors, 2016: The WACMOS-ET project—Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci., 20, 803822, https://doi.org/10.5194/hess-20-803-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453469, https://doi.org/10.5194/hess-15-453-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., and Coauthors, 2016: The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci., 20, 823842, https://doi.org/10.5194/hess-20-823-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A.K., and V. P Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morton, F. I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 176, https://doi.org/10.1016/0022-1694(83)90177-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, https://doi.org/10.1016/j.rse.2011.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narasimhan, B., and R. Srinivasan, 2005: Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric. For. Meteor., 133, 6988, https://doi.org/10.1016/j.agrformet.2005.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otkin, J. A., and Coauthors, 2016: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agric. For. Meteor., 218–219, 230242, https://doi.org/10.1016/j.agrformet.2015.12.065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological droughts. U.S. Department of Commerce Weather Bureau Research Paper 45, 58 pp.

  • Papagiannopoulou, C., D. G. Miralles, W. A. Dorigo, N. E. C. Verhoest, M. Depoorter, and W. Waegeman, 2017: Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett., 12, 074016, https://doi.org/10.1088/1748-9326/aa7145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Páscoa, P., C. M. Gouveia, A. Russo, and R. M. Trigo, 2017: The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012. Int. J. Biometeorol., 61, 439451, https://doi.org/10.1007/s00484-016-1224-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasho, E., J. J. Camarero, M. de Luis, and S. M. Vicente-Serrano, 2011: Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agric. For. Meteor., 151, 18001811, https://doi.org/10.1016/j.agrformet.2011.07.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penman, H. L., 1948: Natural evaporation from open water, bare soil and grass. Proc. Roy. Soc. London, 193A, 120146, https://doi.org/10.1098/rspa.1948.0037.

    • Search Google Scholar
    • Export Citation
  • Perdigão, J. C., R. Salgado, M. J. Costa, H. P. Dasari, and A. Sanchez-Lorenzo, 2016: Variability and trends of downward surface global solar radiation over the Iberian Peninsula based on ERA-40 reanalysis. Int. J. Climatol., 36, 39173933, https://doi.org/10.1002/joc.4603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinzon, J. E., and C. J. Tucker, 2014: A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens., 6, 69296960, https://doi.org/10.3390/rs6086929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Priestley, C. H. B., and R. J. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., and T. N. Papakryiakou, 2003: An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteor., 118, 4962, https://doi.org/10.1016/S0168-1923(03)00072-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosas, T., L. Galiano, R. Ogaya, J. Peñuelas, and J. Martínez-Vilalta, 2013: Dynamics of non-structural carbohydrates in three Mediterranean woody species following long-term experimental drought. Front. Plant Sci., 4, 400, https://doi.org/10.3389/fpls.2013.00400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., M. L. Roderick, and G. D. Farquhar, 2006: A simple pan-evaporation model for analysis of climate simulations: Evaluation over Australia. Geophys. Res. Lett., 33, L17715, https://doi.org/10.1029/2006GL027114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simelton, E., E. D. G. Fraser, M. Termansen, P. M. Forster, and A. J. Dougill, 2009: Typologies of crop-drought vulnerability: An empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environ. Sci. Policy, 12, 438452, https://doi.org/10.1016/j.envsci.2008.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stagge, J. H., L. M. Tallaksen, L. Gudmundsson, A. F. Van Loon, and K. Stahle, 2015: Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol., 35, 40274040, https://doi.org/10.1002/joc.4267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahl, K., I. Kohn, L. De Stefano, L. M. Tallaksen, F. C. Rego, S. I. Seneviratne, J. Andreu, and H. A. J. van Lanen, 2015: An impact perspective on pan-European drought sensitivity. Drought: Research and Science-Policy Interfacing, J. Andreu et al., Eds., CRC Press, 329–334.

  • Stahl, K., and Coauthors, 2016: Impacts of European drought events: Insights from an international database of text-based reports. Nat. Hazards Earth Syst. Sci., 16, 801819, https://doi.org/10.5194/nhess-16-801-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, N. L., 1990: Climatic control of vegetation distribution: The role of the water balance. Amer. Nat., 135, 649670, https://doi.org/10.1086/285067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, N. L., 1998: Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr., 25, 855870, https://doi.org/10.1046/j.1365-2699.1998.00233.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tucker, C. J., C. Vanpraet, E. Boerwinkel, and A. Gaston, 1983: Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens. Environ., 13, 461474, https://doi.org/10.1016/0034-4257(83)90053-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A. F., 2015: Hydrological drought explained. Wiley Interdiscip. Rev.: Water, 2, 359392, https://doi.org/10.1002/wat2.1085.

    • Crossref