A Role for the Equatorial Undercurrent in the Ocean Dynamical Thermostat

S. Coats Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by S. Coats in
Current site
Google Scholar
PubMed
Close
and
K. B. Karnauskas Cooperative Institute for Research in Environmental Sciences, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by K. B. Karnauskas in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Reconstructions of sea surface temperature (SST) based on instrumental observations suggest that the equatorial Pacific zonal SST gradient has increased over the twentieth century. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al., observations of a concurrent weakening of the zonal atmospheric (Walker) circulation are not. Here we show, using heat and momentum budget calculations on an ocean reanalysis dataset, that a seasonal weakening of the zonal atmospheric circulation is in fact consistent with cooling in the eastern equatorial Pacific (EEP) and thus an increase in the zonal SST gradient. This cooling is driven by a strengthening Equatorial Undercurrent (EUC) in response to decreased upper-ocean westward momentum associated with weakening equatorial zonal wind stress. This process can help to reconcile the seemingly contradictory twentieth-century trends in the tropical Pacific atmosphere and ocean. Moreover, it is shown that coupled general circulation models (CGCMs) do not correctly simulate this process; we identify a systematic bias in the relationship between changes in equatorial surface zonal wind stress in the EEP and EUC strength that may help to explain why observations and CGCMs have opposing trends in the zonal SST gradient over the twentieth century.

Current affiliation: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Coats, scoats@whoi.edu

Abstract

Reconstructions of sea surface temperature (SST) based on instrumental observations suggest that the equatorial Pacific zonal SST gradient has increased over the twentieth century. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al., observations of a concurrent weakening of the zonal atmospheric (Walker) circulation are not. Here we show, using heat and momentum budget calculations on an ocean reanalysis dataset, that a seasonal weakening of the zonal atmospheric circulation is in fact consistent with cooling in the eastern equatorial Pacific (EEP) and thus an increase in the zonal SST gradient. This cooling is driven by a strengthening Equatorial Undercurrent (EUC) in response to decreased upper-ocean westward momentum associated with weakening equatorial zonal wind stress. This process can help to reconcile the seemingly contradictory twentieth-century trends in the tropical Pacific atmosphere and ocean. Moreover, it is shown that coupled general circulation models (CGCMs) do not correctly simulate this process; we identify a systematic bias in the relationship between changes in equatorial surface zonal wind stress in the EEP and EUC strength that may help to explain why observations and CGCMs have opposing trends in the zonal SST gradient over the twentieth century.

Current affiliation: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Coats, scoats@whoi.edu
Save
  • Bjerknes, J., 1966: A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus, 18 (4), 820829, https://doi.org/10.3402/tellusa.v18i4.9712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, J. N., J. S. Godfrey, and R. Fiedler, 2007: A zonal momentum balance on density layers for the central and eastern equatorial Pacific. J. Phys. Oceanogr., 37, 19391955, https://doi.org/10.1175/JPO3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, A. Kaplan, Y. Kushnir, D. Pozdnyakov, R. Seager, S. E. Zebiak, and R. Murtugudde, 1997: Twentieth-century sea surface temperature trends. Science, 275, 957960, https://doi.org/10.1126/science.275.5302.957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Seager, M. A. Cane, and S. E. Zebiak, 1996: An ocean dynamical thermostat. J. Climate, 9, 21902196, https://doi.org/10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coats, S., and K. B. Karnauskas, 2017: Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett., 44, 99289937, https://doi.org/10.1002/2017GL074622.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, https://doi.org/10.1016/j.ocemod.2013.10.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2016: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modell., 97, 6590, https://doi.org/10.1016/j.ocemod.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, https://doi.org/10.1029/2010GL043321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drenkard, E. J., and K. B. Karnauskas, 2014: Strengthening of the Pacific Equatorial Undercurrent in the SODA reanalysis: Mechanisms, ocean dynamics, and implications. J. Climate, 27, 24052416, https://doi.org/10.1175/JCLI-D-13-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., and G. F. Philander, 2000: Is El Niño changing? Science, 288, 19972002, https://doi.org/10.1126/science.288.5473.1997.

  • Firing, E., R. Lukas, J. Sadler, and K. Wyrtki, 1983: Equatorial Undercurrent disappears during 1982–1983 El Niño. Science, 222, 11211123, https://doi.org/10.1126/science.222.4628.1121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fofonoff, N. P., and R. C. Millard Jr., 1983: Algorithms for the computation of fundamental properties of seawater. Unesco Tech. Papers in Marine Science 44, 54 pp.

  • Giese, B. S., and S. Ray, 2011: El Niño variability in Simple Ocean Data Assimilation (SODA), 1871–2008. J. Geophys. Res., 116, C02024, https://doi.org/10.1029/2010JC006695.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., M. Winton, B. Samuels, G. Danabasoglu, S. Yeager, S. Marsland, H. Drange, and M. Bentsen, 2012: Datasets and protocol for the CLIVAR WGOMD Coordinated Ocean-Sea Ice Reference Experiments (COREs). WCRP Rep., 21 pp.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. J. Appl. Meteor., 33, 757765, https://doi.org/10.1175/1520-0450(1994)033<0757:DTPLWP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, G. C., B. M. Sloyan, W. S. Kessler, and K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr., 52, 3161, https://doi.org/10.1016/S0079-6611(02)00021-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, J. H., 1969: Surfacing of Pacific Equatorial Undercurrent: Direct observation. Science, 163, 14491450, https://doi.org/10.1126/science.163.3874.1449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., R. Seager, A. Kaplan, Y. Kushnir, and M. A. Cane, 2009: Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean. J. Climate, 22, 43164321, https://doi.org/10.1175/2009JCLI2936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J.-J., 2014: A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys., 52, 132, https://doi.org/10.1002/2013RG000434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kociuba, G., and S. B. Power, 2015: Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: Implications for projections. J. Climate, 28, 2035, https://doi.org/10.1175/JCLI-D-13-00752.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2012: On the observed trends and changes in global sea surface temperature and air–sea heat fluxes (1984–2006). J. Climate, 25, 61236135, https://doi.org/10.1175/JCLI-D-11-00148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño–Southern Oscillation. Climate Dyn., 40, 12231236, https://doi.org/10.1007/s00382-012-1331-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S. B., and G. Kociuba, 2011: The impact of global warming on the Southern Oscillation index. Climate Dyn., 37, 17451754, https://doi.org/10.1007/s00382-010-0951-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiao, L., and R. H. Weisberg, 1997: The zonal momentum balance of the Equatorial Undercurrent in the central Pacific. J. Phys. Oceanogr., 27, 10941119, https://doi.org/10.1175/1520-0485(1997)027<1094:TZMBOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sandeep, S., F. Stordal, P. D. Sardeshmukh, and G. P. Compo, 2014: Pacific Walker circulation variability in coupled and uncoupled climate models. Climate Dyn., 43, 103117, https://doi.org/10.1007/s00382-014-2135-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarachik, E. S., and M. A. Cane, 2010: The El Niño–Southern Oscillation Phenomenon. Cambridge University Press, 369 pp.

    • Crossref
    • Export Citation
  • Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the cause of the 1930s Dust Bowl. Science, 303, 18551859, https://doi.org/10.1126/science.1095048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., 2015: Decadal hydroclimate variability across the Americas. Climate Change: Multidecadal and Beyond, C.-P. Chang et al., Eds., World Scientific Series on Asia-Pacific Weather and Climate, Vol. 6, World Scientific, 235–254.

    • Crossref
    • Export Citation
  • Seager, R., and R. Murtugudde, 1997: Ocean dynamics, thermocline adjustment, and regulation of tropical SST. J. Climate, 10, 521534, https://doi.org/10.1175/1520-0442(1997)010<0521:ODTAAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, https://doi.org/10.1073/pnas.0910856107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., A. Ganachaud, S. McGregor, J. N. Brown, and L. Muir, 2012: Drivers of the projected changes to the Pacific Ocean equatorial circulation. Geophys. Res. Lett., 39, L09605, https://doi.org/10.1029/2012GL051447.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B.-J., S. Lee, E.-S. Chung, and H.-J. Song, 2016: The role of the dry static stability for the recent change in the Pacific Walker circulation. J. Climate, 29, 27652779, https://doi.org/10.1175/JCLI-D-15-0374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and M. Newman, 2012: Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nat. Climate Change, 2, 691699, https://doi.org/10.1038/nclimate1591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, D.-Z., and Z. Liu, 1996: Dynamic ocean-atmosphere coupling: A thermostat for the tropics. Science, 272, 11481150, https://doi.org/10.1126/science.272.5265.1148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W., J. J. Kennedy, J. M. Wallace, and P. D. Jones, 2008: A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature, 453, 646649, https://doi.org/10.1038/nature06982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, A. Timmermann, S. McGregor, T. Ogata, H. Kubota, and Y. M. Okumura, 2012a: Regional patterns of tropical Indo-Pacific climate change: Evidence of the Walker circulation weakening. J. Climate, 25, 16891710, https://doi.org/10.1175/JCLI-D-11-00263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., S.-P. Xie, C. Deser, Y. Kosaka, and Y. M. Okumura, 2012b: Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature, 491, 439443, https://doi.org/10.1038/nature11576.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 7376, https://doi.org/10.1038/nature04744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C., and B. S. Giese, 2013: El Niño Southern Oscillation in an ensemble ocean reanalysis and coupled climate models. J. Geophys. Res. Oceans, 118, 40524071, https://doi.org/10.1002/jgrc.20284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunaka, S., and K. Hanawa, 2011: Intercomparison of historical sea surface temperature datasets. Int. J. Climatol., 31, 10561073, https://doi.org/10.1002/joc.2104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, Z., P. S. Schopf, and J. P. McCreary Jr., 1997: On the annual cycle of upper-ocean circulation in the eastern equatorial Pacific. J. Phys. Oceanogr., 27, 309324, https://doi.org/10.1175/1520-0485(1997)027<0309:OTACOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 22622278, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation