Impact of the South China Sea Summer Monsoon on the Indian Ocean Dipole

Yazhou Zhang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yazhou Zhang in
Current site
Google Scholar
PubMed
Close
,
Jianping Li College of Global Change and Earth System Science, Beijing Normal University, Beijing, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Jiaqing Xue State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiaqing Xue in
Current site
Google Scholar
PubMed
Close
,
Juan Feng College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Juan Feng in
Current site
Google Scholar
PubMed
Close
,
Qiuyun Wang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Qiuyun Wang in
Current site
Google Scholar
PubMed
Close
,
Yidan Xu College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yidan Xu in
Current site
Google Scholar
PubMed
Close
,
Yuehong Wang College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yuehong Wang in
Current site
Google Scholar
PubMed
Close
, and
Fei Zheng State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Fei Zheng in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper investigates the impact of the South China Sea summer monsoon (SCSSM) on the Indian Ocean dipole (IOD). The results show that the SCSSM has a significant positive relationship with the IOD over the boreal summer [June–August (JJA)] and fall [September–November (SON)]. When the SCSSM is strong, the enhanced southwesterly winds that bring more water vapor to the western North Pacific (WNP) lead to surplus precipitation in the WNP, inducing anomalous ascending there. Consequently, the anomalous descending branch of the SCSSM Hadley circulation (SCSSMHC) develops over the Maritime Continent (MC), favoring deficit precipitation in situ. The precipitation dipole over the WNP and MC as well as the enhanced SCSSMHC leads to intensification of the southeasterly anomalies off Sumatra and Java, which then contributes to the negative sea surface temperature (SST) anomalies through the positive wind–evaporation–SST and wind–thermocline–SST (Bjerknes) feedbacks. Consequently, a positive IOD develops because of the increased zonal gradient of the tropical Indian Ocean SST anomalies and vice versa. The SCSSM has a peak correlation with the IOD when the former leads the latter by three months. This implies that a positive IOD can persist from JJA to SON and reach its mature phase within the frame of the positive Bjerknes feedback in SON. In addition, the local and remote SST anomalies in the tropical Indian and Pacific Oceans have a slight influence on the relationship between the SCSSM and precipitation dipole over the WNP and MC.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn

Abstract

This paper investigates the impact of the South China Sea summer monsoon (SCSSM) on the Indian Ocean dipole (IOD). The results show that the SCSSM has a significant positive relationship with the IOD over the boreal summer [June–August (JJA)] and fall [September–November (SON)]. When the SCSSM is strong, the enhanced southwesterly winds that bring more water vapor to the western North Pacific (WNP) lead to surplus precipitation in the WNP, inducing anomalous ascending there. Consequently, the anomalous descending branch of the SCSSM Hadley circulation (SCSSMHC) develops over the Maritime Continent (MC), favoring deficit precipitation in situ. The precipitation dipole over the WNP and MC as well as the enhanced SCSSMHC leads to intensification of the southeasterly anomalies off Sumatra and Java, which then contributes to the negative sea surface temperature (SST) anomalies through the positive wind–evaporation–SST and wind–thermocline–SST (Bjerknes) feedbacks. Consequently, a positive IOD develops because of the increased zonal gradient of the tropical Indian Ocean SST anomalies and vice versa. The SCSSM has a peak correlation with the IOD when the former leads the latter by three months. This implies that a positive IOD can persist from JJA to SON and reach its mature phase within the frame of the positive Bjerknes feedback in SON. In addition, the local and remote SST anomalies in the tropical Indian and Pacific Oceans have a slight influence on the relationship between the SCSSM and precipitation dipole over the WNP and MC.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn
Save
  • Annamalai, H., R. Murtugudde, J. Potemra, S. P. Xie, P. Liu, and B. Wang, 2003: Coupled dynamics over the Indian Ocean: Spring initiation of the zonal mode. Deep-Sea Res. II, 50, 23052330, https://doi.org/10.1016/S0967-0645(03)00058-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 44994502, https://doi.org/10.1029/2001GL013294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 4156, https://doi.org/10.2151/jmsj.81.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 30013004, https://doi.org/10.1029/1999GL010434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behera, S. K., J. J. Luo, S. Masson, S. A. Rao, H. Sakuma, and T. Yamagata, 2006: A CGCM study on the interaction between IOD and ENSO. J. Climate, 19, 16881705, https://doi.org/10.1175/JCLI3797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, R., J. Li, and K.-J. Ha, 2008: Decadal change of January and July persistence of monthly mean 500 hPa geopotential height anomalies. Geophys. Res. Lett., 35, L15702, https://doi.org/10.1029/2008GL034137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drbohlav, H.-K. L., S. Gualdi, and A. Navarra, 2007: A diagnostic study of the Indian Ocean dipole mode in El Niño and non–El Niño years. J. Climate, 20, 29612977, https://doi.org/10.1175/JCLI4153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, L., Q. Liu, C. Wang, and F. Guo, 2017: Indian Ocean dipole modes associated with different types of ENSO development. J. Climate, 30, 22332249, https://doi.org/10.1175/JCLI-D-16-0426.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., J. Li, Y. Li, J. Zhu, and F. Xie, 2015: Relationships among the monsoon-like southwest Australian circulation, the southern annular mode, and winter rainfall over southwest western Australia. Adv. Atmos. Sci., 32, 10631076, https://doi.org/10.1007/s00376-014-4142-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., and G. Meyers, 2003: Interannual variability in the tropical Indian Ocean: A two-year time-scale of Indian Ocean dipole. Deep-Sea Res. II, 50, 22632284, https://doi.org/10.1016/S0967-0645(03)00056-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, A. S., P. Terray, E. Guilyardi, S. Gualdi, and P. Delecluse, 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 34283449, https://doi.org/10.1175/JCLI3478.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat‐induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grunseich, G., B. Subrahmanyam, V. S. N. Murty, and B. S. Giese, 2011: Sea surface salinity variability during the Indian Ocean dipole and ENSO events in the tropical Indian Ocean. J. Geophys. Res., 116, C11013, https://doi.org/10.1029/2011JC007456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, F., Q. Liu, S. Sun, and J. Yang, 2015: Three types of Indian Ocean dipoles. J. Climate, 28, 30733092, https://doi.org/10.1175/JCLI-D-14-00507.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., 2003: Indonesian rainfall variability: Impacts of ENSO and local air–sea interaction. J. Climate, 16, 17751790, https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, C.-C., M.-M. Lu, and M. Kanamitsu, 2008: Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J. Geophys. Res., 113, D08107, https://doi.org/10.1029/2007JD009151.

    • Search Google Scholar
    • Export Citation
  • Huyan, L., J. Li, S. Zhao, C. Sun, D. Dong, T. Liu, and Y. Zhao, 2017: The impact of layer perturbation potential energy on the East Asian summer monsoon. J. Climate, 30, 70877103, https://doi.org/10.1175/JCLI-D-16-0729.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kajikawa, Y., T. Yasunari, and R. Kawamura, 2003: The role of the local Hadley circulation over the western Pacific on the zonally asymmetric anomalies over the Indian Ocean. J. Meteor. Soc. Japan, 81, 259276, https://doi.org/10.2151/jmsj.81.259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and P. Swapna, 2009: Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events. J. Climate, 22, 56115634, https://doi.org/10.1175/2009JCLI2176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., S. Sundaram, P. Swapna, V. Kumar, D. C. Ayantika, and M. Mujumdar, 2011: The crucial role of ocean–atmosphere coupling on the Indian monsoon anomalous response during dipole events. Climate Dyn., 37, 117, https://doi.org/10.1007/s00382-010-0830-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 2004: Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J. Climate, 17, 245265, https://doi.org/10.1175/1520-0442(2004)017<0245:CGSOAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and M. Mu, 2001: The influence of the Indian Ocean dipole on atmospheric circulation and climate. Adv. Atmos. Sci., 18, 831843.

  • Li, J., and Q. Zeng, 2002: A unified monsoon index. Geophys. Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874.

  • Li, J., and Q. Zeng, 2003: A new monsoon index and the geographical distribution of the global monsoons. Adv. Atmos. Sci., 20, 299302, https://doi.org/10.1007/s00376-003-0016-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Z. Wu, Z. Jiang, and J. He, 2010: Can global warming strengthen the East Asian summer monsoon? J. Climate, 23, 66966705, https://doi.org/10.1175/2010JCLI3434.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., G. X. Wu, and D. X. Hu, 2011a: Ocean-Atmosphere Interaction over the Joining Area of Asia and Indian-Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 1. China Meteorological Press, 516 pp.

  • Li, J., G. X. Wu, and D. X. Hu, 2011b: Ocean-Atmosphere Interaction over the Joining Area of Asia and Indian-Pacific Ocean and Its Impact on the Short-Term Climate Variation in China (in Chinese). Vol. 2. China Meteorological Press, 565 pp.

  • Li, T., B. Wang, C.-P. Chang, and Y. Zhang, 2003: A theory for the Indian Ocean dipole–zonal mode. J. Atmos. Sci., 60, 21192135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., J. Li, Y. Li, S. Zhao, F. Zheng, J. Zheng, and Z. Yao, 2018: Influence of the May southern annular mode on the South China Sea summer monsoon. Climate Dyn., https://doi.org/10.1007/s00382-017-3753-3, in press.

    • Search Google Scholar
    • Export Citation
  • Masson, S., J.-P. Boulanger, C. Menkes, P. Delecluse, and T. Yamagata, 2004: Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. J. Geophys. Res., 109, C02002, https://doi.org/10.1029/2003JC001807.

    • Search Google Scholar
    • Export Citation
  • Nuncio, M., and X. Yuan, 2015: The influence of the Indian Ocean dipole on Antarctic sea ice. J. Climate, 28, 26822690, https://doi.org/10.1175/JCLI-D-14-00390.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J. Climate, 16, 27352751, https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and M. A. Alexander, 2004: Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res. I, 51, 619635, https://doi.org/10.1016/j.dsr.2004.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, H., R. T. Sutton, J. M. Slingo, M. Roberts, and E. Black, 2005: Indian Ocean climate and dipole variability in Hadley Centre coupled GCMs. J. Climate, 18, 22862307, https://doi.org/10.1175/JCLI3410.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, Y. Chikamoto, W. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett., 44, 24812492, https://doi.org/10.1002/2016GL072308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, S., Y. Fang, Tana, and B. Liu, 2014: Dynamical mechanisms for asymmetric SSTA patterns associated with some Indian Ocean dipoles. J. Geophys. Res., 119, 30763097, https://doi.org/10.1002/2013JC009651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swapna, P., and R. Krishnan, 2008: Equatorial undercurrents associated with Indian Ocean dipole events during contrasting summer monsoons. Geophys. Res. Lett., 35, L14S04, https://doi.org/10.1029/2008GL033430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., F. Huang, Z. Wu, J. Yang, X. Fu, and K. Kikuchi, 2009: Multi-scale climate variability of the South China Sea monsoon: A review. Dyn. Atmos. Oceans, 47, 1537, https://doi.org/10.1016/j.dynatmoce.2008.09.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., R. Murtugudde, and A. Kumar, 2016: Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Climate Dyn., 47, 24812500, https://doi.org/10.1007/s00382-016-2977-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356360, https://doi.org/10.1038/43848.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiang, B., W. Yu, T. Li, and B. Wang, 2011: The critical role of the boreal summer mean state in the development of the IOD. Geophys. Res. Lett., 38, L02710, https://doi.org/10.1029/2010GL045851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., H. Annamalai, F. A. Schott, and J. P. McCreary Jr., 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xing, N., J.-P. Li, and Y.-K. Li, 2014: A theoretical explanation of anomalous atmospheric circulation associated with ENSO Modoki during boreal winter. Atmos. Ocean. Sci. Lett., 7, 352357, https://doi.org/10.3878/j.issn.1674-2834.14.0020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, and Z. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 58895902, https://doi.org/10.1175/2010JCLI2962.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, Y., S.-P. Xie, L. Wu, Y. Kosaka, N.-C. Lau, and G. A. Vecchi, 2015: Seasonality and predictability of the Indian Ocean dipole mode: ENSO forcing and internal variability. J. Climate, 28, 80218036, https://doi.org/10.1175/JCLI-D-15-0078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Yang, W. Zhou, and C. Li, 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 18491859, https://doi.org/10.1002/joc.1678.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Y. Du, and T. Qu, 2016: A sea surface salinity dipole mode in the tropical Indian Ocean. Climate Dyn., 47, 25732585, https://doi.org/10.1007/s00382-016-2984-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., H. Liao, and J. Li, 2012: Increases in aerosol concentrations over eastern China due to the decadal‐scale weakening of the East Asian summer monsoon. Geophys. Res. Lett., 39, L09809, https://doi.org/10.1029/2012GL051428.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1851 769 200
PDF Downloads 1240 221 24