Exploring the Climatic Response to Wide Variations in Ocean Heat Transport on an Aquaplanet

M. Cameron Rencurrel Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by M. Cameron Rencurrel in
Current site
Google Scholar
PubMed
Close
and
Brian E. J. Rose Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Brian E. J. Rose in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The climatic impact of ocean heat transport (OHT) is studied in a series of idealized aquaplanet climate model experiments. OHT is prescribed through a simple geometrical formula spanning a wide variety of amplitudes and meridional extents. Calculations with a comprehensive GCM are compared against a simple diffusive energy balance model (EBM). The GCM response differs from the EBM in several important ways that illustrate linkages between atmospheric dynamics and radiative processes. Increased OHT produces global mean warming at a rate of 2 K PW−1 OHT across 30° and a strong reduction in meridional temperature gradient. The tropics remain nearly isothermal despite locally large imposed ocean heat uptake. The warmer climate features reduced equatorial convection, moister subtropics, reduced cloudiness, and partial but incomplete compensation in atmospheric heat transport. Many of these effects are linked to a weakened Hadley circulation. Both the warming pattern and hydrological changes differ strongly from those driven by CO2. Similar results are found at 0° and 23.45° obliquity. It is argued that clouds, rather than clear-sky radiative processes, are principally responsible for the global warming and tropical thermostat effects. Cloud changes produce warming in all cases, but the degree of warming depends strongly on the meridional extent of OHT. The strongest warming occurs in response to mid- to high-latitude OHT convergence, which produces widespread loss of boundary layer clouds. Temperature responses to increased OHT are quantitatively reproduced in the EBM by imposing GCM-derived cloud radiative effects as additional forcing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Cameron Rencurrel, crencurrel@albany.edu

Abstract

The climatic impact of ocean heat transport (OHT) is studied in a series of idealized aquaplanet climate model experiments. OHT is prescribed through a simple geometrical formula spanning a wide variety of amplitudes and meridional extents. Calculations with a comprehensive GCM are compared against a simple diffusive energy balance model (EBM). The GCM response differs from the EBM in several important ways that illustrate linkages between atmospheric dynamics and radiative processes. Increased OHT produces global mean warming at a rate of 2 K PW−1 OHT across 30° and a strong reduction in meridional temperature gradient. The tropics remain nearly isothermal despite locally large imposed ocean heat uptake. The warmer climate features reduced equatorial convection, moister subtropics, reduced cloudiness, and partial but incomplete compensation in atmospheric heat transport. Many of these effects are linked to a weakened Hadley circulation. Both the warming pattern and hydrological changes differ strongly from those driven by CO2. Similar results are found at 0° and 23.45° obliquity. It is argued that clouds, rather than clear-sky radiative processes, are principally responsible for the global warming and tropical thermostat effects. Cloud changes produce warming in all cases, but the degree of warming depends strongly on the meridional extent of OHT. The strongest warming occurs in response to mid- to high-latitude OHT convergence, which produces widespread loss of boundary layer clouds. Temperature responses to increased OHT are quantitatively reproduced in the EBM by imposing GCM-derived cloud radiative effects as additional forcing.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: M. Cameron Rencurrel, crencurrel@albany.edu
Save
  • Barreiro, M., A. Cherchi, and S. Masina, 2011: Climate sensitivity to changes in ocean heat transport. J. Climate, 24, 50155030, https://doi.org/10.1175/JCLI-D-10-05029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barron, E. J., 1987: Eocene equator-to-pole surface ocean temperatures: A significant climate problem? Paleoceanography, 2, 729739, https://doi.org/10.1029/PA002i006p00729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bice, K. L., C. R. Scotese, D. Seidov, and E. J. Barron, 2000: Quantifying the role of geographic change in cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. Palaeoclimatol. Palaeoecol., 161, 295310, https://doi.org/10.1016/S0031-0182(00)00072-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bitz, C., M. Holland, E. Hunke, and R. Moritz, 2005: Maintenance of the sea-ice edge. J. Climate, 18, 29032921, https://doi.org/10.1175/JCLI3428.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1964: Atlantic air-sea interaction. Advances in Geophysics, Vol. 10, Academic Press, 1–82, https://doi.org/10.1016/S0065-2687(08)60005-9.

    • Crossref
    • Export Citation
  • Blackburn, M., and B. J. Hoskins, 2013: Context and aims of the aqua-planet experiment. J. Meteor. Soc. Japan, 91A, 115, https://doi.org/10.2151/jmsj.2013-A01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., K.-M. Lau, and Y. C. Sud, 1997: Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J. Climate, 10, 20552077, https://doi.org/10.1175/1520-0442(1997)010<2055:SSTALS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, https://doi.org/10.1029/2004GL021581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Covey, C., and E. Barron, 1988: The role of ocean heat transport in climatic change. Earth-Sci. Rev., 24, 429445, https://doi.org/10.1016/0012-8252(88)90065-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T., and J. C. Zachos, 2000: Comparison of zonal temperature profiles for past warm time periods. Warm Climates in Earth History, Cambridge University Press, 50–76, doi:10.1017/CBO9780511564512.004.

    • Crossref
    • Export Citation
  • Czaja, A., and J. Marshall, 2006: The partitioning of poleward heat transport between the atmosphere and ocean. J. Atmos. Sci., 63, 14981511, https://doi.org/10.1175/JAS3695.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., 2010: Geographic muting of changes in the arctic sea ice cover. Geophys. Res. Lett., 37, L16501, https://doi.org/10.1029/2010GL043741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enderton, D., and J. Marshall, 2009: Explorations of atmosphere–ocean–ice climates on an aquaplanet and their meridional energy transports. J. Atmos. Sci., 66, 15931611, https://doi.org/10.1175/2008JAS2680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013: The nonlinear and nonlocal nature of climate feedbacks. J. Climate, 26, 82898304, https://doi.org/10.1175/JCLI-D-12-00631.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrari, R., and D. Ferreira, 2011: What processes drive the ocean heat transport? Ocean Modell., 38, 171186, https://doi.org/10.1016/j.ocemod.2011.02.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and J.-M. Campin, 2010: Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J. Climate, 23, 14561476, https://doi.org/10.1175/2009JCLI3197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and B. E. J. Rose, 2011: Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate, 24, 9921012, https://doi.org/10.1175/2010JCLI3580.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greenwood, D. R., and S. L. Wing, 1995: Eocene continental climates and latitudinal temperature gradients. Geology, 23, 10441048, https://doi.org/10.1130/0091-7613(1995)023<1044:ECCALT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2001: The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J. Atmos. Sci., 58, 943948, https://doi.org/10.1175/1520-0469(2001)058<0943:TPOTPE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herweijer, C., R. Seager, M. Winton, and A. Clement, 2005: Why ocean heat transport warms the global mean climate. Tellus, 57A, 662675, https://doi.org/10.3402/tellusa.v57i4.14708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S., Y. Ming, and I. M. Held, 2015: Mechanisms of forced tropical meridional energy flux change. J. Climate, 28, 17251742, https://doi.org/10.1175/JCLI-D-14-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotinski, R. M., and J. R. Toggweiler, 2003: Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography, 18, 1007, https://doi.org/10.1029/2001PA000730.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huber, M., and L. C. Sloan, 2001: Heat transport, deep waters, and thermal gradients: Coupled simulation of an Eocene greenhouse climate. Geophys. Res. Lett., 28, 34813484, https://doi.org/10.1029/2001GL012943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y.-T., and D. Frierson, 2010: Increasing atmospheric poleward energy transport with global warming. Geophys. Res. Lett., 37, L24807, https://doi.org/10.1029/2010GL045440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., P. Hassanzadeh, S. A. Hill, and A. Sheshadri, 2017: A perspective on climate model hierarchies. J. Adv. Model. Earth Syst., 9, 17601771, https://doi.org/10.1002/2017MS001038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koll, D. B., and D. S. Abbot, 2013: Why tropical sea surface temperature is insensitive to ocean heat transport changes. J. Climate, 26, 67426749, https://doi.org/10.1175/JCLI-D-13-00192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2004: Multiple equilibria and asymmetric climates in the CCM3 coupled to an oceanic mixed layer with thermodynamic sea ice. Geophys. Res. Lett., 31, L04201, https://doi.org/10.1029/2003GL019039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held, and D. Kim, 2008: A moist benchmark calculation for atmosphere general circulation models. J. Climate, 21, 49344954, https://doi.org/10.1175/2008JCLI1891.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., E. T. DeWeaver, and D. J. Vimont, 2010: Evaporation change and global warming: The role of net radiation and relative humidity. J. Geophys. Res., 115, D20118, https://doi.org/10.1029/2010JD013949.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., 1969: Climate and the ocean circulation: II. The atmospheric circulation and the effects of heat transfer by ocean currents. Mon. Wea. Rev., 97, 775805, https://doi.org/10.1175/1520-0493(1969)097<0775:CATOC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medeiros, B., and B. Stevens, 2011: Revealing differences in GCM representations of low clouds. Climate Dyn., 36, 385399, https://doi.org/10.1007/s00382-009-0694-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. Richter, S. Park, P. H. Lauritzen, S. J. Vavrus, P. J. Rasch, and M. Zhang, 2013: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26, 51505168, https://doi.org/10.1175/JCLI-D-12-00236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975a: Analytical solution to a simple climate model with diffusive heat transport. J. Atmos. Sci., 32, 13011307, https://doi.org/10.1175/1520-0469(1975)032<1301:ASTASC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • North, G. R., 1975b: Theory of energy-balance climate models. J. Atmos. Sci., 32, 20332043, https://doi.org/10.1175/1520-0469(1975)032<2033:TOEBCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearson, P. N., and M. Palmer, 2000: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695699, https://doi.org/10.1038/35021000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R., 1995: Thermostats, radiator fins, and the local runaway greenhouse. J. Atmos. Sci., 52, 17841806, https://doi.org/10.1175/1520-0469(1995)052<1784:TRFATL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., 2015: Stable “waterbelt” climates controlled by tropical ocean heat transport: A nonlinear coupled climate mechanism of relevance to snowball earth. J. Geophys. Res. Atmos., 120, 14041423, https://doi.org/10.1002/2014JD022659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., 2018: Climlab: A python toolkit for interactive, process-oriented climate modeling. J. Open Source Software, 3 (24), 659, https://doi.org/10.21105/joss.00659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and D. Ferreira, 2013: Ocean heat transport and water vapor greenhouse in a warm equable climate: A new look at the low gradient paradox. J. Climate, 26, 21172136, https://doi.org/10.1175/JCLI-D-11-00547.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and M. C. Rencurrel, 2016: The vertical structure of tropospheric water vapor: Comparing radiative and ocean-driven climate changes. J. Climate, 29, 42514268, https://doi.org/10.1175/JCLI-D-15-0482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., D. Ferreira, and J. Marshall, 2013: The role of oceans and sea ice in abrupt transitions between multiple climate states. J. Climate, 26, 28622879, https://doi.org/10.1175/JCLI-D-12-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. Armour, D. Battisti, N. Feldi, and D. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., T. W. Cronin, and C. M. Bitz, 2017: Ice caps and ice belts: The effects of obliquity on ice–albedo feedback. Astrophys. J., 846, 28, https://doi.org/10.3847/1538-4357/aa8306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., D. Battisti, J. Yin, N. Gordon, N. Naik, A. Clement, and M. Cane, 2002: Is the Gulf Stream responsible for Europe’s mild winters? Quart. J. Roy. Meteor. Soc., 128, 25632586, https://doi.org/10.1256/qj.01.128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, H. A., P. J. Rasch, and B. E. J. Rose, 2017: Increased ocean heat convergence into the high latitudes with CO2 doubling enhances polar-amplified warming. Geophys. Res. Lett., 44, 10 58310 591, https://doi.org/10.1002/2017GL074561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/10.1175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, P. H., 1978: Constraints on dynamical transports of energy on a spherical planet. Dyn. Atmos. Oceans, 2, 123139, https://doi.org/10.1016/0377-0265(78)90006-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. Climate Dyn., 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. P. Stepaniak, 2003: Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16, 36913705, https://doi.org/10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2016: The tropical rain belts with an annual cycle and continent model intercomparison project: TRACMIP. J. Adv. Model. Earth Syst., 8, 18681891, https://doi.org/10.1002/2016MS000748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 2003: On the climatic impact of ocean circulation. J. Climate, 16, 28752889, https://doi.org/10.1175/1520-0442(2003)016<2875:OTCIOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2005: The total meridional heat flux and its oceanic and atmospheric partition. J. Climate, 18, 43744380, https://doi.org/10.1175/JCLI3539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., Y. Zhao, Z. Liu, Q. Li, F. He, and Q. Zhang, 2015: Heat transport compensation in atmosphere and ocean over the past 22,000 years. Sci. Rep., 5, 16661, https://doi.org/10.1038/srep16661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1094 433 122
PDF Downloads 505 63 6