The Internal Generation of the Atlantic Ocean Interdecadal Variability

Olivier Arzel Laboratoire d’Océanographie Physique et Spatiale, Université de Bretagne Occidentale, Brest, France

Search for other papers by Olivier Arzel in
Current site
Google Scholar
PubMed
Close
,
Thierry Huck Laboratoire d’Océanographie Physique et Spatiale, Université de Bretagne Occidentale, Brest, France

Search for other papers by Thierry Huck in
Current site
Google Scholar
PubMed
Close
, and
Alain Colin de Verdière Laboratoire d’Océanographie Physique et Spatiale, Université de Bretagne Occidentale, Brest, France

Search for other papers by Alain Colin de Verdière in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Numerical simulations of a realistic ocean general circulation model forced by prescribed surface fluxes are used to study the origin and structure of intrinsic interdecadal variability of the ocean circulation. When eddy-induced turbulent diffusivities are low enough, spontaneous oscillations of the Atlantic meridional overturning circulation (AMOC) with periods O(20) yr and amplitude O(1) Sv (1 Sv ≡ 106 m3 s−1) emerge. The transition from the steady to the oscillatory regime is shown to be consistent with a supercritical Hopf bifurcation of the horizontal Peclet number. Adding atmospheric thermal damping is shown to have a very limited influence on the domain of existence of intrinsic variability. The spatial structure of the mode consists of a dipole of sea surface temperature (SST)/sea surface height (SSH) anomalies centered at about 50°N with stronger variance in the western part of the subpolar gyre, in agreement with the observed Atlantic multidecadal oscillation (AMO) signature in this region. Specific features include a westward propagation of temperature anomalies from the source region located on the western flank of the North Atlantic Current (NAC) and a one-quarter phase lag between surface and subsurface (800 m) temperature anomalies. Local linear stability calculations including viscous and diffusive effects confirm that the North Atlantic Current is baroclinically unstable on scales of O(1000) km with growth rates of O(1) yr−1. Both the spatial structure of the mode and the period agree in magnitude with in situ measurements in the North Atlantic, suggesting that this intrinsic ocean mode participates in the observed Atlantic bidecadal climate variability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier Arzel, olivier.arzel@univ-brest.fr

Abstract

Numerical simulations of a realistic ocean general circulation model forced by prescribed surface fluxes are used to study the origin and structure of intrinsic interdecadal variability of the ocean circulation. When eddy-induced turbulent diffusivities are low enough, spontaneous oscillations of the Atlantic meridional overturning circulation (AMOC) with periods O(20) yr and amplitude O(1) Sv (1 Sv ≡ 106 m3 s−1) emerge. The transition from the steady to the oscillatory regime is shown to be consistent with a supercritical Hopf bifurcation of the horizontal Peclet number. Adding atmospheric thermal damping is shown to have a very limited influence on the domain of existence of intrinsic variability. The spatial structure of the mode consists of a dipole of sea surface temperature (SST)/sea surface height (SSH) anomalies centered at about 50°N with stronger variance in the western part of the subpolar gyre, in agreement with the observed Atlantic multidecadal oscillation (AMO) signature in this region. Specific features include a westward propagation of temperature anomalies from the source region located on the western flank of the North Atlantic Current (NAC) and a one-quarter phase lag between surface and subsurface (800 m) temperature anomalies. Local linear stability calculations including viscous and diffusive effects confirm that the North Atlantic Current is baroclinically unstable on scales of O(1000) km with growth rates of O(1) yr−1. Both the spatial structure of the mode and the period agree in magnitude with in situ measurements in the North Atlantic, suggesting that this intrinsic ocean mode participates in the observed Atlantic bidecadal climate variability.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Olivier Arzel, olivier.arzel@univ-brest.fr
Save
  • Amante, C., and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources, and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp., https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

  • Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Arzel, O., and A. Colin de Verdière, 2016: Can we infer diapycnal mixing rates from the World Ocean temperature–salinity distribution? J. Phys. Oceanogr., 46, 37513775, https://doi.org/10.1175/JPO-D-16-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., T. Huck, and A. Colin de Verdière, 2006: The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr., 36, 17031718, https://doi.org/10.1175/JPO2938.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., A. Colin de Verdière, and T. Huck, 2007: On the origin of interdecadal oscillations in a coupled ocean–atmosphere model. Tellus, 59A, 367383, https://doi.org/10.1111/j.1600-0870.2007.00227.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arzel, O., M. H. England, A. Colin de Verdière, and T. Huck, 2012: Abrupt millennial variability and interdecadal-interstadial oscillations in a global coupled model: Sensitivity to the background climate state. Climate Dyn., 39, 259275, https://doi.org/10.1007/s00382-011-1117-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and D. S. Battisti, 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci., 55, 477493, https://doi.org/10.1175/1520-0469(1998)055<0477:TBEOAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, K., and L. J. Lewis, 1979: A water mass model of the World Ocean. J. Geophys. Res., 84, 25032517, https://doi.org/10.1029/JC084iC05p02503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. W., D. Ferreira, J.-M. Campin, J. Marshall, and R. Tulloch, 2012: On the relationship between decadal buoyancy anomalies and variability of the Atlantic meridional overturning circulation. J. Climate, 25, 80098030, https://doi.org/10.1175/JCLI-D-11-00505.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cane, M. A., A. C. Clement, L. N. Murphy, and K. Bellomo, 2017: Low-pass filtering, heat flux, and Atlantic multidecadal variability. J. Climate, 30, 75297553, https://doi.org/10.1175/JCLI-D-16-0810.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and M. Ghil, 1996: Interdecadal variability in a hybrid coupled ocean–atmosphere model. J. Phys. Oceanogr., 26, 15611578, https://doi.org/10.1175/1520-0485(1996)026<1561:IVIAHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W., R. Bleck, and C. Rooth, 2004: Multi-decadal thermohaline variability in an ocean–atmosphere general circulation model. Climate Dyn., 22, 573590, https://doi.org/10.1007/s00382-004-0400-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, H. A. Dijkstra, G. Lesins, and M. K. Dubey, 2011: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 38, L13704, https://doi.org/10.1029/2011GL047501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Rädel, and B. Stevens, 2015: The Atlantic multidecadal oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., 1986: On mean flow instabilities within the planetary geostrophic equations. J. Phys. Oceanogr., 16, 19811984, https://doi.org/10.1175/1520-0485(1986)016<1981:OMFIWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and T. Huck, 1999: Baroclinic instability: An oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29, 893910, https://doi.org/10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colin de Verdière, A., and M. Ollitrault, 2016: A direct determination of the World Ocean barotropic circulation. J. Phys. Oceanogr., 46, 255273, https://doi.org/10.1175/JPO-D-15-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., A. Hu, G. A. Meehl, W. M. Washington, and W. G. Strand, 2005: Atlantic thermohaline circulation in a coupled general circulation model: Unforced variations versus forced changes. J. Climate, 18, 32703293, https://doi.org/10.1175/JCLI3481.1; Corrigendum, 18, 4915–4918, https://doi.org/10.1175/JCLI9006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3. J. Climate, 21, 55245544, https://doi.org/10.1175/2008JCLI2019.1; Corrigendum, 22, 1586, https://doi.org/10.1175/2008JCLI2986.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, and J. W. Hurrel, 2012: Variability of the Atlantic meridional overturning circulation in CCSM4. J. Climate, 25, 51535172, https://doi.org/10.1175/JCLI-D-11-00463.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability excited by atmospheric surface flux forcing. J. Climate, 13, 14811495, https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2012: Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys. Res. Lett., 39, L13702, https://doi.org/10.1029/2012GL052107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., R. Zhang, and M. E. Mann, 2007: Decadal to centennial variability of the Atlantic from observations and models. Ocean Circulation: Mechanisms and Impacts, Geophys. Monogr., Vol. 173, Amer. Geophys. Union, 131–148.

    • Crossref
    • Export Citation
  • Denng, J., A. Beckmann, and R. Gerdes, 1996: The Gulf Stream separation problem. The Warmwatersphere of the North Atlantic Ocean, W. Krauss, Ed., Gebrüder Borntraeger, 253–290.

  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dommenget, D., and M. Latif, 2002: Analysis of observed and simulated SST spectra in the midlatitudes. Climate Dyn., 19, 277288, https://doi.org/10.1007/s00382-002-0229-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J. Climate, 18, 11171135, https://doi.org/10.1175/JCLI3328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drews, A., and R. J. Greatbatch, 2016: Atlantic multidecadal variability in a model with an improved North Atlantic Current. Geophys. Res. Lett., 43, 81998206, https://doi.org/10.1002/2016GL069815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eden, C., M. Jochum, and G. Danabasoglu, 2009: Effects of different closures for thickness diffusivity. Ocean Modell., 26, 4759, https://doi.org/10.1016/j.ocemod.2008.08.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Q. Y., and H. Dijkstra, 2014: Are North Atlantic multidecadal SST anomalies westward propagating? Geophys. Res. Lett., 41, 541546, https://doi.org/10.1002/2013GL058687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferjani, D., T. Huck, and A. Colin de Verdière, 2013: Influence of bottom topography on large-scale decadal basin modes. J. Mar. Res., 71, 289316, https://doi.org/10.1357/002224013808877080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., and H. A. Dijkstra, 2009: Coherent multidecadal variability in North Atlantic sea level. Geophys. Res. Lett., 36, L15604, https://doi.org/10.1029/2009GL039455.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., H. A. Dijkstra, and A. von der Heydt, 2008: Sub-surface signatures of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 35, L19602, https://doi.org/10.1029/2008GL034989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., H. A. Dijkstra, and A. von der Heydt, 2009: Noise-induced multidecadal variability in the North Atlantic: Excitation of normal modes. J. Phys. Oceanogr., 39, 220233, https://doi.org/10.1175/2008JPO3951.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., E. Kestenare, M. Botzet, A. F. Carril, H. Drange, A. Pardaens, L. Terray, and R. Sutton, 2004: An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis. Climate Dyn., 22, 373388, https://doi.org/10.1007/s00382-003-0388-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and S. Zhang, 1995: An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Climate, 8, 8191, https://doi.org/10.1175/1520-0442(1995)008<0081:AIOIAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., R. C. Pacanowski, and R. W. Hallberg, 2000: Spurious diapycnal mixing associated with advection in a z-coordinate ocean model. Mon. Wea. Rev., 128, 538564, https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2013: Northern North Atlantic sea surface height and ocean heat content variability. J. Geophys. Res. Oceans, 118, 36703678, https://doi.org/10.1002/jgrc.20268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., 1976: Stochastic climate models. Part I: Theory. Tellus, 28, 473485, https://doi.org/10.3402/tellusa.v28i6.11316.

  • Held, I. M., 2005: The gap between simulation and understanding in climate modeling. Bull. Amer. Meteor. Soc., 86, 16091614, https://doi.org/10.1175/BAMS-86-11-1609.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Herbaut, C., J. Sirven, and S. Février, 2002: Response of a simplified oceanic general circulation model to idealized NAO-like stochastic forcing. J. Phys. Oceanogr., 32, 31823192, https://doi.org/10.1175/1520-0485(2002)032<3182:ROASOG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hochet, A., T. Huck, and A. Colin de Verdière, 2015: Large-scale baroclinic instability of the mean oceanic circulation: A local approach. J. Phys. Oceanogr., 45, 27382754, https://doi.org/10.1175/JPO-D-15-0084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., and G. K. Vallis, 2001: Linear stability analysis of the three-dimensional thermally-driven ocean circulation: Application to interdecadal oscillations. Tellus, 53A, 526545, https://doi.org/10.3402/tellusa.v53i4.12225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., A. Colin de Verdière, and A. J. Weaver, 1999: Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr., 29, 865892, https://doi.org/10.1175/1520-0485(1999)029<0865:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., G. K. Vallis, and A. Colin de Verdière, 2001: On the robustness of the interdecadal modes of the thermohaline circulation. J. Climate, 14, 940963, https://doi.org/10.1175/1520-0442(2001)014<0940:OTROTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huck, T., O. Arzel, and F. Sévellec, 2015: Multidecadal variability of the overturning circulation in presence of eddy turbulence. J. Phys. Oceanogr., 45, 157173, https://doi.org/10.1175/JPO-D-14-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jamet, Q., T. Huck, O. Arzel, J.-M. Campin, and A. Colin de Verdière, 2016: Oceanic control of multidecadal variability in an idealized coupled GCM. Climate Dyn., 46, 30793095, https://doi.org/10.1007/s00382-015-2754-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., 2009: The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J. Climate, 22, 16101625, https://doi.org/10.1175/2008JCLI2628.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, M. F., M.-S. Seidenkrantz, B. H. Jacobsen, and A. Kuijpers, 2011: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun., 2, 178, https://doi.org/10.1038/ncomms1186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141157, https://doi.org/10.1175/1520-0442(1994)007<0141:IVINAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, Y.-O., and C. Frankignoul, 2012: Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Climate Dyn., 38, 859876, https://doi.org/10.1007/s00382-011-1040-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, https://doi.org/10.1007/s00382-008-0441-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562, https://doi.org/10.1175/JPO3130.1.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, https://doi.org/10.1029/96JC02775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, A. Romanou, M. Kelley, and A. Leboissetier, 2017: The dependence of the ocean’s MOC on mesoscale eddy diffusivities: A model study. Ocean Modell., 111, 18, https://doi.org/10.1016/j.ocemod.2017.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. Scientific Committee on Oceanic Research–IAPSO Rep. WG127, 28 pp.

  • Muir, L. C., and A. V. Fedorov, 2017: Evidence for the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models. Climate Dyn., 48, 15171535, https://doi.org/10.1007/s00382-016-3157-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Kane, T. J., R. J. Matear, M. A. Chamberlain, J. S. Risbey, B. M. Sloyan, and I. Horenko, 2013: Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states. Ocean Modell., 69, 121, https://doi.org/10.1016/j.ocemod.2013.04.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Reilly, C. H., M. Huber, T. Woollings, and L. Zanna, 2016: The signature of low-frequency oceanic forcing in the Atlantic multidecadal oscillation. Geophys. Res. Lett., 43, 28102818, https://doi.org/10.1002/2016GL067925.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ortega, P., J. Mignot, D. Swingedouw, F. Sévellec, and E. Guilyardi, 2015: Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog. Oceanogr., 137, 237249, https://doi.org/10.1016/j.pocean.2015.06.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Plaut, G., M. Ghil, and R. Vautard, 1995: Interannual and interdecadal variability in 335 years of central England temperature. Science, 268, 710713, https://doi.org/10.1126/science.268.5211.710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, https://doi.org/10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., and A. V. Fedorov, 2013: The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J. Climate, 26, 21602183, https://doi.org/10.1175/JCLI-D-11-00023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sévellec, F., T. Huck, and M. B. Jelloul, 2006: On the mechanism of centennial thermohaline oscillations. J. Mar. Res., 64, 355392, https://doi.org/10.1357/002224006778189608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res., 65, 655683, https://doi.org/10.1357/002224007783649484.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., and H. A. Dijkstra, 2002: Instability of the thermohaline circulation on interdecadal timescales. J. Phys. Oceanogr., 32, 138160, https://doi.org/10.1175/1520-0485(2002)032<0138:IOTTOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • te Raa, L. A., J. Gerrits, and H. A. Dijkstra, 2004: Identification of the mechanism of interdecadal variability in the North Atlantic Ocean. J. Phys. Oceanogr., 34, 27922807, https://doi.org/10.1175/JPO2655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., M. Latif, R. Voss, and A. Grötzner, 1998: Northern Hemispheric interdecadal variability: A coupled air–sea mode. J. Climate, 11, 19061931, https://doi.org/10.1175/1520-0442-11.8.1906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and J. Marshall, 2012: Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J. Climate, 25, 40674080, https://doi.org/10.1175/JCLI-D-11-00460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, and K. S. Smith, 2009:Interpretation of the propagation of surface altimetric observations in terms of planetary waves and geostrophic turbulence. J. Geophys. Res., 114, C02005, https://doi.org/10.1029/2008JC005055.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076, https://doi.org/10.1175/2011JPO4404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2009: Mechanisms of climate variability from years to decades. Stochastic Physics and Climate Modelling, T. Palmer and P. Williams, Eds., Cambridge University Press, 1–33.

  • Veronis, G., 1975: The role of models in tracer studies. Numerical Models of the Ocean Circulation, National Academy of Science, 133–146.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, https://doi.org/10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, https://doi.org/10.1175/JPO-D-13-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., 1997: The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation. J. Phys. Oceanogr., 27, 203208, https://doi.org/10.1175/1520-0485(1997)027<0203:TDEOBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., P. Cessi, and B. D. Cornuelle, 2017: An intrinsic mode of interannual variability in the Indian Ocean. J. Phys. Oceanogr., 47, 701719, https://doi.org/10.1175/JPO-D-16-0177.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 1999: A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Climate, 12, 6470, https://doi.org/10.1175/1520-0442-12.1.64.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2017: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal oscillation. Geophys. Res. Lett., 44, 78657875, https://doi.org/10.1002/2017GL074342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic western boundary current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080, https://doi.org/10.1175/JPO3102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, T. L. Delworth, W. M. Kim, J. Robson, and S. G. Yeager, 2016: Comment on “The Atlantic multidecadal oscillation without a role for ocean circulation.” Science, 352, 1527, https://doi.org/10.1126/science.aaf1660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X., and J. Jungclaus, 2008: Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Climate Dyn., 31, 731741, https://doi.org/10.1007/s00382-008-0383-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 574 259 71
PDF Downloads 340 59 1