The Downward Influence of Uncertainty in the Northern Hemisphere Stratospheric Polar Vortex Response to Climate Change

Isla R Simpson Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Isla R Simpson in
Current site
Google Scholar
PubMed
Close
,
Peter Hitchcock Laboratoire de Météorologie Dynamique, École Polytechnique, Palaiseau, France

Search for other papers by Peter Hitchcock in
Current site
Google Scholar
PubMed
Close
,
Richard Seager Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
Yutian Wu Lamont-Doherty Earth Observatory, Columbia University, New York, New York

Search for other papers by Yutian Wu in
Current site
Google Scholar
PubMed
Close
, and
Patrick Callaghan Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Patrick Callaghan in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

General circulation models display a wide range of future predicted changes in the Northern Hemisphere winter stratospheric polar vortex. The downward influence of this stratospheric uncertainty on the troposphere has previously been inferred from regression analyses across models and is thought to contribute to model spread in tropospheric circulation change. Here we complement such regression analyses with idealized experiments using one model where different changes in the zonal-mean stratospheric polar vortex are artificially imposed to mimic the extreme ends of polar vortex change simulated by models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The influence of the stratospheric vortex change on the tropospheric circulation in these experiments is quantitatively in agreement with the inferred downward influence from across-model regressions, indicating that such regressions depict a true downward influence of stratospheric vortex change on the troposphere below. With a relative weakening of the polar vortex comes a relative increase in Arctic sea level pressure (SLP), a decrease in zonal wind over the North Atlantic, drying over northern Europe, and wetting over southern Europe. The contribution of stratospheric vortex change to intermodel spread in these quantities is assessed in the CMIP5 models. The spread, as given by 4 times the across-model standard deviation, is reduced by roughly 10% on regressing out the contribution from stratospheric vortex change, while the difference between models on extreme ends of the distribution in terms of their stratospheric vortex change can reach up to 50% of the overall model spread for Arctic SLP and 20% of the overall spread in European precipitation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isla R. Simpson, islas@ucar.edu

Abstract

General circulation models display a wide range of future predicted changes in the Northern Hemisphere winter stratospheric polar vortex. The downward influence of this stratospheric uncertainty on the troposphere has previously been inferred from regression analyses across models and is thought to contribute to model spread in tropospheric circulation change. Here we complement such regression analyses with idealized experiments using one model where different changes in the zonal-mean stratospheric polar vortex are artificially imposed to mimic the extreme ends of polar vortex change simulated by models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The influence of the stratospheric vortex change on the tropospheric circulation in these experiments is quantitatively in agreement with the inferred downward influence from across-model regressions, indicating that such regressions depict a true downward influence of stratospheric vortex change on the troposphere below. With a relative weakening of the polar vortex comes a relative increase in Arctic sea level pressure (SLP), a decrease in zonal wind over the North Atlantic, drying over northern Europe, and wetting over southern Europe. The contribution of stratospheric vortex change to intermodel spread in these quantities is assessed in the CMIP5 models. The spread, as given by 4 times the across-model standard deviation, is reduced by roughly 10% on regressing out the contribution from stratospheric vortex change, while the difference between models on extreme ends of the distribution in terms of their stratospheric vortex change can reach up to 50% of the overall model spread for Arctic SLP and 20% of the overall spread in European precipitation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Isla R. Simpson, islas@ucar.edu
Save
  • Ayarzagüena, B., and Coauthors, 2018: No robust evidence of future changes in major stratospheric sudden warmings: A multi-model assessment from CCMI. Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, https://doi.org/10.1126/science.1063315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and D. L. Hartmann, 2010: Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations. Geophys. Res. Lett., 37, L15801, https://doi.org/10.1029/2010GL044144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. M. Polvani, 2013: Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet stream: Can it? Has it? Will it? Wiley Interdiscip. Rev. Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bell, C. J., L. J. Gray, and J. Kettleborough, 2010: Changes in Northern Hemisphere stratospheric variability under increasing CO2 concentrations. Quart. J. Roy. Meteor. Soc., 136, 11811190, https://doi.org/10.1002/qj.633.

    • Search Google Scholar
    • Export Citation
  • Box, J. E., and Coauthors, 2013: Greenland ice sheet mass balance reconstruction. Part 1: Net snow accumulation (1600–2009). J. Climate, 26, 39193934, https://doi.org/10.1175/JCLI-D-12-00373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butchart, N., and Coauthors, 2010: Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. J. Climate, 23, 53495374, https://doi.org/10.1175/2010JCLI3404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Climate, 23, 34743496, https://doi.org/10.1175/2010JCLI3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and T. G. Shepherd, 2017: Contributions of climate feedbacks to changes in atmospheric circulation. J. Climate, 30, 90979118, https://doi.org/10.1175/JCLI-D-17-0189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Charlton-Perez, A. J., and Coauthors, 2013: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos., 118, 24942505, https://doi.org/10.1002/jgrd.50125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delcambre, S. C., D. J. Lorenz, D. J. Vimont, and J. E. Martin, 2013: Diagnosing Northern Hemisphere jet portrayal in 17 CMIP3 global climate models: Twenty-first century projections. J. Climate, 26, 49304946, https://doi.org/10.1175/JCLI-D-12-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, E. P., and Coauthors, 2012: Assessing and understanding the impact of stratospheric dynamics and variability on the Earth system. Bull. Amer. Meteor. Soc., 93, 845859, https://doi.org/10.1175/BAMS-D-11-00145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., M. R. Allen, and K. D. Williams, 2002: The role of stratospheric resolution in simulating the Arctic Oscillation response to greenhouse gases. Geophys. Res. Lett., 29, 1500, https://doi.org/10.1029/2001GL014444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, T. J. Woollings, G. Zappa, and K. I. Hodges, 2012: How large are projected 21st century storm track changes? Geophys. Res. Lett., 39, L18707, https://doi.org/10.1029/2012GL052873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harvey, B. J., L. C. Shaffrey, and T. J. Woollings, 2014: Equator-to-pole temperature differences and the extra-tropical storm track responses of the CMIP5 climate models. Climate Dyn., 43, 11711182, https://doi.org/10.1007/s00382-013-1883-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, https://doi.org/10.1175/2009BAMS2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., C. J. Marks, M. E. McIntyre, T. G. Shepherd, and K. P. Shine, 1991: On the “downward control” of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651678, https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and P. H. Haynes, 2014: Zonally symmetric adjustment in the presence of artificial relaxation. J. Atmos. Sci., 71, 43494368, https://doi.org/10.1175/JAS-D-14-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hitchcock, P., and I. R. Simpson, 2014: The downward influence of stratospheric sudden warmings. J. Atmos. Sci., 71, 38563876, https://doi.org/10.1175/JAS-D-14-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, R., M. Ting, and P. J. Kushner, 2004: The global stationary wave response to climate change in a coupled GCM. J. Climate, 17, 540556, https://doi.org/10.1175/1520-0442(2004)017<0540:TGSWRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., and E. Manzini, 2012: Stratospheric influence on tropospheric climate change in the Northern Hemisphere. J. Geophys. Res., 117, D05133, https://doi.org/10.1029/2011JD017036.

    • Search Google Scholar
    • Export Citation
  • Karpechko, A. Y., and E. Manzini, 2017: Arctic stratosphere dynamical response to global warming. J. Climate, 30, 70717086, https://doi.org/10.1175/JCLI-D-16-0781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidston, J., and E. P. Gerber, 2010: Intermodel variability of the poleward shift of the austral jet stream in the CMIP3 integrations linked to biases in 20th century climatology. Geophys. Res. Lett., 37, L09708, https://doi.org/10.1029/2010GL042873.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., and L. M. Polvani, 2004: Stratosphere–troposphere coupling in a relatively simple AGCM: The role of eddies. J. Climate, 17, 629639, https://doi.org/10.1175/1520-0442(2004)017<0629:SCIARS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119, https://doi.org/10.1029/2006JD008087.

    • Search Google Scholar
    • Export Citation
  • Manzini, E., and Coauthors, 2014: Northern winter climate change: Assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 119, 79797998, https://doi.org/10.1002/2013JD021403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., and T. G. Shepherd, 2009: Impact of climate change on stratospheric sudden warmings as simulated by the Canadian Middle Atmosphere Model. J. Climate, 22, 54495463, https://doi.org/10.1175/2009JCLI3069.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. M., S. N. Osprey, L. J. Gray, N. Butchart, S. C. Hardiman, A. J. Charlton-Perez, and P. Watson, 2012: The effect of climate change on the variability of the Northern Hemisphere stratospheric polar vortex. J. Atmos. Sci., 69, 26082618, https://doi.org/10.1175/JAS-D-12-021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., B. Langenbrunner, J. E. Meyerson, A. Hall, and N. Berg, 2013: California winter precipitation change under global warming in the Coupled Model Intercomparison Project phase 5 ensemble. J. Climate, 26, 62386256, https://doi.org/10.1175/JCLI-D-12-00514.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 30113026, https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., L. Sun, A. H. Butler, J. H. Richter, and C. Deser, 2017: Distinguishing stratospheric sudden warmings from ENSO as key drivers of wintertime climate variability over the North Atlantic and Eurasia. J. Climate, 30, 19591969, https://doi.org/10.1175/JCLI-D-16-0277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., F. Sassi, and R. R. Garcia, 2010: Toward a physically based gravity wave source parameterization in a general circulation model. J. Atmos. Sci., 67, 136156, https://doi.org/10.1175/2009JAS3112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, J. H., C. Deser, and L. Sun, 2015: Effects of stratospheric variability on El Niño teleconnections. Environ. Res. Lett., 10, 124021, https://doi.org/10.1088/1748-9326/10/12/124021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rind, D., D. Shindell, P. Lonergan, and N. K. Balachandran, 1998: Climate change and the middle atmosphere. Part 3: The doubled CO2 climate revisited. J. Climate, 11, 876894, https://doi.org/10.1175/1520-0442(1998)011<0876:CCATMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2012: Climate change projections and stratosphere–troposphere interaction. Climate Dyn., 38, 20892098, https://doi.org/10.1007/s00382-011-1080-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., H. Liu, N. Henderson, I. Simpson, C. Kelley, T. Shaw, Y. Kushnir, and M. Ting, 2014a: Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J. Climate, 27, 46554676, https://doi.org/10.1175/JCLI-D-13-00446.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014b: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., J. Pelwitz, and N. Harnik, 2010: Downward wave coupling between the stratosphere and troposphere: The importance of meridional wave guiding and comparison with zonal-mean coupling. J. Climate, 23, 63656381, https://doi.org/10.1175/2010JCLI3804.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature, 399, 452455, https://doi.org/10.1038/20905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., and J. F. Scinocca, 2010: The influence of the basic state on the Northern Hemisphere circulation response to climate change. J. Climate, 23, 14341446, https://doi.org/10.1175/2009JCLI3167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sigmond, M., J. F. Scinocca, and P. J. Kusher, 2008: Impact of the stratosphere on tropospheric climate change. Geophys. Res. Lett., 35, L12706, https://doi.org/10.1029/2008GL033573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., and L. M. Polvani, 2016: Revisiting the relationship between jet position, forced response, and annular mode variability in the southern midlatitudes. Geophys. Res. Lett., 43, 28962903, https://doi.org/10.1002/2016GL067989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., M. Blackburn, and J. D. Haigh, 2009: The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J. Atmos. Sci., 66, 13471365, https://doi.org/10.1175/2008JAS2758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., P. Hitchcock, T. G. Shepherd, and J. F. Scinocca, 2011: Stratospheric variability and tropospheric annular-mode timescales. Geophys. Res. Lett., 38, L20806, https://doi.org/10.1029/2011GL049304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 17111725, https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., and I. M. Held, 1993: GCM response of northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide. J. Climate, 6, 18591870, https://doi.org/10.1175/1520-0442(1993)006<1859:GRONWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., and J. C. Fyfe, 2012: Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys. Res. Lett., 39, L16711, https://doi.org/10.1029/2012GL052810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wenzel, S., V. Eyring, E. P. Gerber, and A. Y. Karpechko, 2016: Constraining future summer austral jet stream positions in the CMIP5 ensemble by process-oriented multiple diagnostics regression. J. Climate, 29, 673687, https://doi.org/10.1175/JCLI-D-15-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., A. J. Charlton-Perez, and L. J. Gray, 2012: Trends in austral jet position in ensembles of high- and low-top CMIP5 models. J. Geophys. Res., 117, D13115, https://doi.org/10.1029/2012JD017597.

    • Search Google Scholar
    • Export Citation
  • Wittman, M. A. H., A. J. Charlton, and L. M. Polvani, 2007: The effect of lower stratospheric shear on baroclinic instability. J. Atmos. Sci., 64, 479496, https://doi.org/10.1175/JAS3828.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woollings, T., and M. Blackburn, 2012: The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J. Climate, 25, 886902, https://doi.org/10.1175/JCLI-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zappa, G., B. J. Hoskins, and T. G. Shepherd, 2015: Improving climate change detection through optimal seasonal averaging: The case of the North Atlantic jet and European precipitation. J. Climate, 28, 63816397, https://doi.org/10.1175/JCLI-D-14-00823.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2102 581 166
PDF Downloads 1608 177 16