An Examination of an Inland-Penetrating Atmospheric River Flood Event under Potential Future Thermodynamic Conditions

Kelly Mahoney NOAA/Earth Systems Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Kelly Mahoney in
Current site
Google Scholar
PubMed
Close
,
Dustin Swales NOAA/Earth Systems Research Laboratory, NOAA/Cooperative Institute for Research in the Environmental Sciences, and University of Colorado Boulder, Boulder, Colorado

Search for other papers by Dustin Swales in
Current site
Google Scholar
PubMed
Close
,
Michael J. Mueller NOAA/Earth Systems Research Laboratory, NOAA/Cooperative Institute for Research in the Environmental Sciences, and University of Colorado Boulder, Boulder, Colorado

Search for other papers by Michael J. Mueller in
Current site
Google Scholar
PubMed
Close
,
Michael Alexander NOAA/Earth Systems Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Michael Alexander in
Current site
Google Scholar
PubMed
Close
,
Mimi R. Abel NOAA/Earth Systems Research Laboratory, NOAA/Cooperative Institute for Research in the Environmental Sciences, and University of Colorado Boulder, Boulder, Colorado

Search for other papers by Mimi R. Abel in
Current site
Google Scholar
PubMed
Close
, and
Kelsey Malloy Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Kelsey Malloy in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Atmospheric rivers (ARs) are well-known producers of precipitation along the U.S. West Coast. Depending on their intensity, orientation, and location of landfall, some ARs penetrate inland and cause heavy rainfall and flooding hundreds of miles from the coast. Climate change is projected to potentially alter a variety of AR characteristics and impacts. This study examines potential future changes in moisture transport and precipitation intensity, type, and distribution for a high-impact landfalling AR event in the U.S. Pacific Northwest using an ensemble of high-resolution numerical simulations produced under projected future thermodynamic changes.

Results indicate increased total precipitation in all future simulations, although there is considerable model spread in both domain-averaged and localized inland precipitation totals. Notable precipitation enhancements across inland locations such as Idaho’s Sawtooth Mountain Range are present in four out of six future simulations. The most marked inland precipitation increases are shown to occur by way of stronger and deeper moisture transport that more effectively crosses Oregon’s Coastal and Cascade mountain ranges, essentially “spilling over” into the Snake River Valley and fueling orographic precipitation in the Sawtooth Mountains. Moisture transport enhancements are shown to have both thermodynamic and dynamic contributions, with both enhanced absolute environmental moisture and localized lower- and midlevel dynamics contributing to amplified inland moisture penetration. Precipitation that fell as snow in the present-day simulation becomes rain in the future simulations for many mid- and high-elevation locations, suggesting potential for enhanced flood risk for these regions in future climate instances of similar events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0118.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly M. Mahoney, kelly.mahoney@noaa.gov

Abstract

Atmospheric rivers (ARs) are well-known producers of precipitation along the U.S. West Coast. Depending on their intensity, orientation, and location of landfall, some ARs penetrate inland and cause heavy rainfall and flooding hundreds of miles from the coast. Climate change is projected to potentially alter a variety of AR characteristics and impacts. This study examines potential future changes in moisture transport and precipitation intensity, type, and distribution for a high-impact landfalling AR event in the U.S. Pacific Northwest using an ensemble of high-resolution numerical simulations produced under projected future thermodynamic changes.

Results indicate increased total precipitation in all future simulations, although there is considerable model spread in both domain-averaged and localized inland precipitation totals. Notable precipitation enhancements across inland locations such as Idaho’s Sawtooth Mountain Range are present in four out of six future simulations. The most marked inland precipitation increases are shown to occur by way of stronger and deeper moisture transport that more effectively crosses Oregon’s Coastal and Cascade mountain ranges, essentially “spilling over” into the Snake River Valley and fueling orographic precipitation in the Sawtooth Mountains. Moisture transport enhancements are shown to have both thermodynamic and dynamic contributions, with both enhanced absolute environmental moisture and localized lower- and midlevel dynamics contributing to amplified inland moisture penetration. Precipitation that fell as snow in the present-day simulation becomes rain in the future simulations for many mid- and high-elevation locations, suggesting potential for enhanced flood risk for these regions in future climate instances of similar events.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0118.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kelly M. Mahoney, kelly.mahoney@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 3.37 MB)
Save
  • Abel, M. R., K. M. Mahoney, P. J. Neiman, B. J. Moore, M. Alexander, and F. M. Ralph, 2014: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part II: Sensitivity of modeled precipitation to terrain height and atmospheric river orientation. J. Hydrometeor., 15, 19541974, https://doi.org/10.1175/JHM-D-13-0176.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. A., J. D. Scott, D. Swales, M. R. Abel, K. Mahoney, and C. A. Smith, 2015: Moisture pathways into the U.S. Intermountain West associated with heavy winter precipitation events. J. Hydrometeor., 16, 11841206, https://doi.org/10.1175/JHM-D-14-0139.1.

    • Search Google Scholar
    • Export Citation
  • Auad, G., A. Miller, and E. Di Lorenzo, 2006: Long term forecast of oceanic conditions off California and biological implications. J. Geophys. Res. Oceans, 111, C09008, https://doi.org/10.1029/2005JC003219.

    • Search Google Scholar
    • Export Citation
  • Backes, T. M., M. L. Kaplan, R. Schumer, and J. F. Mejia, 2015: A climatology of the vertical structure of water vapor transport to the Sierra Nevada in cool season atmospheric river precipitation events. J. Hydrometeor., 16, 10291047, https://doi.org/10.1175/JHM-D-14-0077.1.

    • Search Google Scholar
    • Export Citation
  • Bernhardt, D., 2006: Glacier National Park flooding November 2006. NWS Western Region Tech. Attachment 08-23, 15 pp., https://www.weather.gov/media/wrh/online_publications/talite/talite0823.pdf.

  • Chen, M., and X.-Y. Huang, 2006: Digital filter initialization for MM5. Mon. Wea. Rev., 134, 12221236, https://doi.org/10.1175/MWR3117.1.

    • Search Google Scholar
    • Export Citation
  • Chou, C., C.-A. Chen, P.-H. Tan, and K.-T. Chen, 2012: Mechanisms for global warming impacts on precipitation frequency and intensity. J. Climate, 25, 32913306, https://doi.org/10.1175/JCLI-D-11-00239.1.

    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Dominguez, F., and Coauthors, 2018: Tracking an atmospheric river in a warmer climate: From water vapor to economic impacts. Earth Syst. Dyn., 9, 249266, https://doi.org/10.5194/esd-9-249-2018.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, https://doi.org/10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett., 32, L17706, https://doi.org/10.1029/2005GL023272.

    • Search Google Scholar
    • Export Citation
  • Frei, C., C. Schär, D. Lüthi, and H. C. Davies, 1998: Heavy precipitation processes in a warmer climate. Geophys. Res. Lett., 25, 14311434, https://doi.org/10.1029/98GL51099.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, F. M. Ralph, E. J. Fetzer, and P. J. Neiman, 2016: Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett., 43, 29642973, https://doi.org/10.1002/2016GL067978.

    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Search Google Scholar
    • Export Citation
  • Hare, J. A., and Coauthors, 2012: Cusk (Brosme brosme) and climate change: Assessing the threat to a candidate marine fish species under the US Endangered Species Act. ICES J. Mar. Sci., 69, 17531768, https://doi.org/10.1093/icesjms/fss160.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., B. J. J. M. van den Hurk, E. Min, G. J. van Oldenborgh, A. C. Petersen, D. A. Stainforth, E. Vasileiadou, and L. A. Smith, 2015: Tales of future weather. Nat. Climate Change, 5, 107113, https://doi.org/10.1038/nclimate2450.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and G. M. Lackmann, 2011: The impact of future climate change on TC intensity and structure: A downscaling approach. J. Climate, 24, 46444661, https://doi.org/10.1175/2011JCLI3761.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Idaho Office of Emergency Management, 2011: Idaho Floods!: A Flood Awareness Guide for the Gem State. 43 pp., https://ioem.idaho.gov/Pages/Preparedness/Hazards/NaturalHazards/Flood.aspx.

  • Kawase, H., T. Yoshikane, M. Hara, F. Kimura, T. Yasunari, B. Ailikun, H. Ueda, and T. Inoue, 2009: Intermodel variability of future changes in the Baiu rainband estimated by the pseudo global warming downscaling method. J. Geophys. Res., 114, D24110, https://doi.org/10.1029/2009JD011803.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Klos, P. Z., and Coauthors, 2015: Indicators of climate change in Idaho: An assessment framework for coupling biophysical change and social perception. Wea. Climate Soc., 7, 238254, https://doi.org/10.1175/WCAS-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Knowles, N., M. D. Dettinger, and D. R. Cayan, 2006: Trends in snowfall versus rainfall in the western United States. J. Climate, 19, 45454559, https://doi.org/10.1175/JCLI3850.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., T. Hall, T. Knutson, K. E. Kunkel, R. J. Trapp, D. E. Waliser, and M. F. Wehner, 2017: Extreme storms. Climate Science Special Report: Fourth National Climate Assessment, Vol. I, D. J. Wuebbles et al., Eds., U.S. Global Change Research Program, 257–276, https://doi.org/10.7930/J07S7KXX.

  • Lackmann, G. M., 2013: The south-central U.S. flood of May 2010: Present and future. J. Climate, 26, 46884709, https://doi.org/10.1175/JCLI-D-12-00392.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., 2015: Hurricane Sandy before 1900 and after 2100. Bull. Amer. Meteor. Soc., 96, 547560, https://doi.org/10.1175/BAMS-D-14-00123.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., R. P. Allan, G. Villarini, B. Lloyd-Hughes, D. J. Brayshaw, and A. J. Wade, 2013: Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett., 8, 034010, https://doi.org/10.1088/1748-9326/8/3/034010.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., F. M. Ralph, D. E. Waliser, A. Gershunov, and M. D. Dettinger, 2015: Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett., 42, 56175625, https://doi.org/10.1002/2015GL064672.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., Y. Qian, X. Bian, W. M. Washington, J. Han, and J. O. Roads, 2004: Mid-century ensemble regional climate change scenarios for the western United States. Climatic Change, 62, 75113, https://doi.org/10.1023/B:CLIM.0000013692.50640.55.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 10191034, https://doi.org/10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., and X.-Y. Huang, 1994: Diabatic initialization using recursive filters. Tellus, 46A, 583597, https://doi.org/10.1034/j.1600-0870.1994.t01-4-00003.x.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., J. A. Nye, J. A. Hare, C. A. Stock, M. A. Alexander, J. D. Scott, K. L. Curti, and K. Drew, 2014: Projected ocean warming creates a conservation challenge for river herring populations. ICES J. Mar. Sci., 72, 374387, https://doi.org/10.1093/icesjms/fsu134.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., F. Canova, and L. R. Hoxit, 1980: Meteorological characteristics of flash flood events over the western United States. Mon. Wea. Rev., 108, 18661877, https://doi.org/10.1175/1520-0493(1980)108<1866:MCOFFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marciano, C. G., G. M. Lackmann, and W. A. Robinson, 2015: Changes in U.S. East Coast cyclone dynamics with climate change. J. Climate, 28, 468484, https://doi.org/10.1175/JCLI-D-14-00418.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, T., C. Murphy, G. McCarthy, C. Broderick, and R. L. Wilby, 2018: Super Storm Desmond: A process-based assessment. Environ. Res. Lett., 13, 014024, https://doi.org/10.1088/1748-9326/aa98c8.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mueller, M., K. M. Mahoney, and M. R. Hughes, 2017: High-resolution model-based investigation of moisture transport into the Pacific Northwest during a strong atmospheric river event. Mon. Wea. Rev., 145, 38613879, https://doi.org/10.1175/MWR-D-16-0466.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, B. J. Moore, M. R. Abel, K. M. Mahoney, J. Cordeira, and M. D. Dettinger, 2013: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics. J. Hydrometeor., 14, 460484, https://doi.org/10.1175/JHM-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers?—A pilot study. Geophys. Res. Lett., 19, 24012404, https://doi.org/10.1029/92GL02916.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Search Google Scholar
    • Export Citation
  • Pall, P., C. M. Patricola, M. F. Wehner, D. A. Stone, C. J. Paciorek, and W. D. Collins, 2017: Diagnosing conditional anthropogenic contributions to heavy Colorado rainfall in September 2013. Wea. Climate Extremes, 17, 16, https://doi.org/10.1016/j.wace.2017.03.004.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., T. G. Smirnova, S. G. Benjamin, J. M. Brown, and J. S. Kenyon, 2016: Implementation of a digital filter initialization in the WRF Model and its application in the Rapid Refresh. Mon. Wea. Rev., 144, 99106, https://doi.org/10.1175/MWR-D-15-0219.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2014: Climate change impacts on the water balance of the Colorado headwaters: High-resolution regional climate model simulations. J. Hydrometeor., 15, 10911116, https://doi.org/10.1175/JHM-D-13-0118.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., A. F. Hamlet, C. F. Mass, S.-Y. Lee, M. Stumbaugh, and R. Steed, 2014: Estimates of twenty-first-century flood risk in the Pacific Northwest based on regional climate model simulations. J. Hydrometeor., 15, 18811899, https://doi.org/10.1175/JHM-D-13-0137.1.

    • Search Google Scholar
    • Export Citation
  • Schär, C., C. Frei, D. Lüthi, and H. C. Davies, 1996: Surrogate climate-change scenarios for regional climate models. Geophys. Res. Lett., 23, 669672, https://doi.org/10.1029/96GL00265.

    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2016: A common framework for approaches to extreme event attribution. Curr. Climate Change Rep., 2, 2838, https://doi.org/10.1007/s40641-016-0033-y.

    • Search Google Scholar
    • Export Citation
  • Shi, X., and D. R. Durran, 2015: Estimating the response of extreme precipitation over midlatitude mountains to global warming. J. Climate, 28, 42464262, https://doi.org/10.1175/JCLI-D-14-00750.1.

    • Search Google Scholar
    • Export Citation
  • Shi, X., and D. R. Durran, 2016: Sensitivities of extreme precipitation to global warming are lower over mountains than over oceans and plains. J. Climate, 29, 47794791, https://doi.org/10.1175/JCLI-D-15-0576.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. Tech. Rep. NCAR/TN-475+STR, 113 pp.

  • Sugiyama, M., H. Shiogama, and S. Emori, 2010: Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc. Natl. Acad. Sci. USA, 107, 571575, https://doi.org/10.1073/pnas.0903186107.

    • Search Google Scholar
    • Export Citation
  • Swales, D., M. Alexander, and M. R. Abel, 2016: Examining moisture pathways and extreme precipitation in the U.S. Intermountain West using self-organizing maps. Geophys. Res. Lett., 43, 17271735, https://doi.org/10.1002/2015GL067478.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2015: Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Y. Wang, K. Hamilton, and A. Lauer, 2016: Dynamical downscaling of the climate for the Hawaiian Islands. Part II: Projection for the late twenty-first century. J. Climate, 29, 83338354, https://doi.org/10.1175/JCLI-D-16-0038.1.

    • Search Google Scholar
    • Export Citation