How Wet and Dry Spells Evolve across the Conterminous United States Based on 555 Years of Paleoclimate Data

Michelle Ho CSIRO Land and Water, Black Mountain, Canberra, Australian Capital Territory, Australia, and Columbia Water Center, Columbia University, New York, New York

Search for other papers by Michelle Ho in
Current site
Google Scholar
PubMed
Close
,
Upmanu Lall Columbia Water Center, and Department of Earth and Environmental Engineering, Columbia University, New York, New York

Search for other papers by Upmanu Lall in
Current site
Google Scholar
PubMed
Close
, and
Edward R. Cook Lamont–Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Edward R. Cook in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Evolving patterns of droughts and wet spells in the conterminous United States (CONUS) are examined over 555 years using a tree-ring-based paleoclimate reconstruction of the modified Palmer drought severity index (PDSI). A hidden Markov model is used as an unsupervised method of classifying climate states and quantifying the temporal evolution from one state to another. Modeling temporal variability in spatial patterns of drought and wet spells provides the ability to objectively assess and simulate historical persistence and recurrence of similar patterns. The Viterbi algorithm reveals the probable sequence of states through time, enabling an examination of temporal and spatial features and associated large-scale climate forcing. Distinct patterns of sea surface temperature that are known to enhance or inhibit rainfall are associated with some states. Using the current CONUS PDSI field the model can be used to simulate the space–time PDSI pattern over the next few years, or unconditional simulations can be used to derive estimates of spatially concurrent PDSI patterns and their persistence and intensity across the CONUS.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0182.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michelle Ho, mh3538@columbia.edu

Abstract

Evolving patterns of droughts and wet spells in the conterminous United States (CONUS) are examined over 555 years using a tree-ring-based paleoclimate reconstruction of the modified Palmer drought severity index (PDSI). A hidden Markov model is used as an unsupervised method of classifying climate states and quantifying the temporal evolution from one state to another. Modeling temporal variability in spatial patterns of drought and wet spells provides the ability to objectively assess and simulate historical persistence and recurrence of similar patterns. The Viterbi algorithm reveals the probable sequence of states through time, enabling an examination of temporal and spatial features and associated large-scale climate forcing. Distinct patterns of sea surface temperature that are known to enhance or inhibit rainfall are associated with some states. Using the current CONUS PDSI field the model can be used to simulate the space–time PDSI pattern over the next few years, or unconditional simulations can be used to derive estimates of spatially concurrent PDSI patterns and their persistence and intensity across the CONUS.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0182.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michelle Ho, mh3538@columbia.edu

Supplementary Materials

    • Supplemental Materials (DOCX 2.16 MB)
Save
  • Alley, W. M., 1984: The Palmer drought severity index: Limitations and assumptions. J. Climate Appl. Meteor., 23, 11001109, https://doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreadis, K. M., E. A. Clark, A. W. Wood, A. F. Hamlet, and D. P. Lettenmaier, 2005: Twentieth-century drought in the conterminous United States. J. Hydrometeor., 6, 9851001, https://doi.org/10.1175/JHM450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andrews, E. D., R. C. Antweiler, P. Neiman, and F. M. Ralph, 2004: Influence of ENSO on flood frequency along the California coast. J. Climate, 17, 337348, https://doi.org/10.1175/1520-0442(2004)017<0337:IOEOFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banerjee, S., B. P. Carlin, and A. E. Gelfand, 2004: Hierarchical Modeling and Analysis for Spatial Data. CRC Monographs on Statistics and Applied Probability, Vol. 101, CRC Press, 474 pp.

  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Climate, 14, 21052128, https://doi.org/10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, L. E., T. Petrie, G. Soules, and N. Weiss, 1970: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat., 41, 164171, https://doi.org/10.1214/aoms/1177697196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellone, E., J. P. Hughes, and P. Guttorp, 2000: A hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Res., 15, 112, http://www.jstor.org/stable/24867296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bishop, C. M., 2006: Pattern Recognition and Machine Learning. Springer, 738 pp.

  • Booker, J. F., 1995: Hydrologic and economic impacts of drought under alternative policy responses. J. Amer. Water Resour. Assoc., 31, 889906, https://doi.org/10.1111/j.1752-1688.1995.tb03409.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, J. S., and Coauthors, 2013: The U.S. drought of 2012 in perspective: A call to action. Global Food Secur., 2, 139143, https://doi.org/10.1016/j.gfs.2013.08.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, C., B. Rajagopalan, and E. Zagona, 2014: A hidden Markov model combined with climate indices for multidecadal streamflow simulation. Water Resour. Res., 50, 78367846, https://doi.org/10.1002/2014WR015567.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, C., B. Rajagopalan, and C. Woodhouse, 2016: A Bayesian hierarchical nonhomogeneous hidden Markov model for multisite streamflow reconstructions. Water Resour. Res., 52, 78377850, https://doi.org/10.1002/2016WR018887.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chow, C., and C. Liu, 1968: Approximating discrete probability distributions with dependence trees. IEEE Trans. Inf. Theory, 14, 462467, https://doi.org/10.1109/TIT.1968.1054142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cioffi, F., F. Conticello, and U. Lall, 2016: Projecting changes in Tanzania rainfall for the 21st century. Int. J. Climatol., 36, 42974314, https://doi.org/10.1002/joc.4632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cioffi, F., F. Conticello, U. Lall, L. Marotta, and V. Telesca, 2017: Large scale climate and rainfall seasonality in a Mediterranean area: Insights from a non-homogeneous Markov model applied to the Agro-Pontino plain. Hydrol. Processes, 31, 668686, https://doi.org/10.1002/hyp.11061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Claussen, M., and Coauthors, 2002: Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Climate Dyn., 18, 579586, https://doi.org/10.1007/s00382-001-0200-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Climate Prediction Center, 2015: Drought monitoring. NOAA, http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/drought.shtml.

  • Coats, S., J. E. Smerdon, K. B. Karnauskas, and R. Seager, 2016: The improbable but unexceptional occurrence of megadrought clustering in the American West during the Medieval Climate Anomaly. Environ. Res. Lett., 11, 74025, https://doi.org/10.1088/1748-9326/11/7/074025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., and E. R. Cook, 1998: The changing relationship between ENSO variability and moisture balance in the continental United States. Geophys. Res. Lett., 25, 45294532, https://doi.org/10.1029/1998GL900145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cole, J. E., J. T. Overpeck, and E. R. Cook, 2002: Multiyear La Niña events and persistent drought. Geophys. Res. Lett., 29, 1647, https://doi.org/10.1029/2001GL013561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., R. L. Miller, and R. Seager, 2009: Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl. Acad. Sci. USA, 106, 49975001, https://doi.org/10.1073/pnas.0810200106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., E. R. Cook, K. J. Anchukaitis, R. Seager, and R. L. Miller, 2011: Forced and unforced variability of twentieth century North American droughts and pluvials. Climate Dyn., 37, 10971110, https://doi.org/10.1007/s00382-010-0897-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and Coauthors, 2016: The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia. J. Geophys. Res. Atmos., 121, 12 82012 838, https://doi.org/10.1002/2016JD024892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland, 1999: Drought reconstructions for the continental United States. J. Climate, 12, 11451162, https://doi.org/10.1175/1520-0442(1999)012<1145:DRFTCU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, M. A. Cane, and D. W. Stahle, 2007: North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev., 81, 93134, https://doi.org/10.1016/j.earscirev.2006.12.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, E. R., R. Seager, R. R. Heim, R. S. Vose, C. Herweijer, and C. Woodhouse, 2010: Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate contex. J. Quart. Sci., 25, 4861, https://doi.org/10.1002/jqs.1303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooley, H., K. Donnelly, R. Phurisamban, and M. Subramanian, 2015: Impacts of California’s ongoing drought: Agriculture. Pacific Institute Doc., 30 pp., http://pacinst.org/app/uploads/2015/08/ImpactsOnCaliforniaDrought-Ag.pdf.

  • Dai, A., K. E. Trenberth, and T. Qian, 2004: A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeor., 5, 11171130, https://doi.org/10.1175/JHM-386.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Damberg, L., and A. AghaKouchak, 2014: Global trends and patterns of drought from space. Theor. Appl. Climatol., 117, 441448, https://doi.org/10.1007/s00704-013-1019-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11, 30953111, https://doi.org/10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Devineni, N., U. Lall, E. Etienne, D. Shi, and C. Xi, 2015: America's water risk: Current demand and climate variability. Geophys. Res. Lett., 42, 22852293, https://doi.org/10.1002/2015GL063487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diaz, H. F., 1983: Drought in the United States. J. Climate Appl. Meteor., 22, 316, https://doi.org/10.1175/1520-0450(1983)022<0003:DITUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dix, M. R., and B. G. Hunt, 1995: Chaotic influences and the problem of deterministic seasonal predictions. Int. J. Climatol., 15, 729752, https://doi.org/10.1002/joc.3370150703.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drabenstott, M., and A. Barkema, 1988: U.S. agriculture shrugs off the drought. Economic Review, Vol. 73, No. 10, Federal Reserve Bank of Kansas City, Kansas City, MO, 32–50, https://www.kansascityfed.org/~/media/files/publicat/econrev/econrevarchive/1988/4q88drab.pdf.

  • Enfield, D. B., 1992: Historical and prehistorical overview of El Niño/Southern Oscillation. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation, H. F. Diaz and V. Markgraf, Eds., Cambridge University Press, 476 pp.

  • Erkyihun, S. T., E. Zagona, and B. Rajagopalan, 2017: Wavelet and hidden Markov-based stochastic simulation methods comparison on Colorado River streamflow. J. Hydrol. Eng., 22, 04017033, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Foufoula-Georgiou, E., and D. P. Lettenmaier, 1987: A Markov renewal model for rainfall occurrences. Water Resour. Res., 23, 875884, https://doi.org/10.1029/WR023i005p00875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fye, F. K., D. W. Stahle, and E. R. Cook, 2003: Paleoclimatic analogs to twentieth-century moisture regimes across the United States. Bull. Amer. Meteor. Soc., 84, 901909, https://doi.org/10.1175/BAMS-84-7-901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Genest, C., and A.-C. Favre, 2007: Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng., 12, 347368, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, G. B., 2007: Influence of the Pacific decadal oscillation on winter precipitation and drought during years of neutral ENSO in the western United States. Wea. Forecasting, 22, 116124, https://doi.org/10.1175/WAF983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goosse, H., E. Crespin, A. de Montety, M. E. Mann, H. Renssen, and A. Timmermann, 2010: Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J. Geophys. Res., 115, D09108, https://doi.org/10.1029/2009JD012737.

    • Search Google Scholar
    • Export Citation
  • Grafton, R. Q., G. D. Libecap, E. C. Edwards, F. J. O’Brien, and C. Landry, 2011: A comparative assessment of water markets: Insights from the Murray-Darling basin of Australia and the western USA. Water Policy, 14, 175193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, A. M., A. W. Robertson, and S. Kirshner, 2008: Analysis of Indian monsoon daily rainfall on subseasonal to multidecadal time-scales using a hidden Markov model. Quart. J. Roy. Meteor. Soc., 134, 875887, https://doi.org/10.1002/qj.254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, A. M., A. W. Robertson, P. Smyth, and S. Triglia, 2011: Downscaling projections of Indian monsoon rainfall using a non-homogeneous hidden Markov model. Quart. J. Roy. Meteor. Soc., 137, 347359, https://doi.org/10.1002/qj.788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, A. M., T. Holsclaw, A. W. Robertson, and P. Smyth, 2015: A Bayesian multivariate nonhomogeneous Markov model. Machine Learning and Data Mining Approaches to Climate Science, V. Lakshmanan et al., Eds., Springer, 61–69, https://doi.org/10.1007/978-3-319-17220-0_6.

    • Crossref
    • Export Citation
  • Guttman, N. B., 1998: Comparing the Palmer drought index and the Standardized Precipitation Index. J. Amer. Water Resour. Assoc., 34, 113121, https://doi.org/10.1111/j.1752-1688.1998.tb05964.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guttman, N. B., J. R. Wallis, and J. R. M. Hosking, 1992: Spatial comparability of the Palmer drought severity index. J. Amer. Water Resour. Assoc., 28, 11111119, https://doi.org/10.1111/j.1752-1688.1992.tb04022.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491165, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hernando, D., V. Crespi, and G. Cybenko, 2005: Efficient computation of the hidden Markov model entropy for a given observation sequence. IEEE Trans. Inf. Theory, 51, 26812685, https://doi.org/10.1109/TIT.2005.850223.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, M., V. Parthasarathy, E. Etienne, T. A. Russo, N. Devineni, and U. Lall, 2016: America’s water: Agricultural water demands and the response of groundwater. Geophys. Res. Lett., 43, 75467555, https://doi.org/10.1002/2016GL069797.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, M., U. Lall, M. Allaire, N. Devineni, H.-H. Kwon, I. Pal, D. Raff, and D. Wegner, 2017: The future role of dams in the United States of America. Water Resour. Res., 53, 982998, https://doi.org/10.1002/2016WR019905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager, 2014: Causes and predictability of the 2012 Great Plains drought. Bull. Amer. Meteor. Soc., 95, 269282, https://doi.org/10.1175/BAMS-D-13-00055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hornbeck, R., 2012: The enduring impact of the American Dust Bowl: Short-and long-run adjustments to environmental catastrophe. Amer. Econ. Rev., 102, 14771507, https://doi.org/10.1257/aer.102.4.1477.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., and P. Guttorp, 1994a: A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour. Res., 30, 15351546, https://doi.org/10.1029/93WR02983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, J. P., and P. Guttorp, 1994b: Incorporating spatial dependence and atmospheric data in a model of precipitation. J. Appl. Meteor., 33, 15031515, https://doi.org/10.1175/1520-0450(1994)033<1503:ISDAAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, B. B., 1975: Markov mixture models for drought lengths. Water Resour. Res., 11, 6474, https://doi.org/10.1029/WR011i001p00064.

  • Kangas, R. S., and T. J. Brown, 2007: Characteristics of US drought and pluvials from a high-resolution spatial dataset. Int. J. Climatol., 27, 13031325, https://doi.org/10.1002/joc.1473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and A. J. Koscielny, 1982: Drought in the United States: 1895–1981. J. Climatol., 2, 313329, https://doi.org/10.1002/joc.3370020402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khalil, A. F., H.-H. Kwon, U. Lall, and Y. H. Kaheil, 2010: Predictive downscaling based on non-homogeneous hidden Markov models. Hydrol. Sci. J., 55, 333350, https://doi.org/10.1080/02626661003780342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., 1993: The global climate of December 1991–February 1992: Mature-phase warm (ENSO) episode conditions develop. J. Climate, 6, 16391655, https://doi.org/10.1175/1520-0442(1993)006<1639:TGCODM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, H.-H., U. Lall, and A. F. Khalil, 2007: Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resour. Res., 43, W05407, https://doi.org/10.1029/2006WR005258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, H.-H., U. Lall, and S.-J. Kim, 2016: The unusual 2013–2015 drought in South Korea in the context of a multicentury precipitation record: Inferences from a nonstationary, multivariate, Bayesian copula model. Geophys. Res. Lett., 43, 85348544, https://doi.org/10.1002/2016GL070270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lall, U., N. Devineni, and Y. Kaheil, 2016: An empirical, nonparametric simulator for multivariate random variables with differing marginal densities and nonlinear dependence with hydroclimatic applications. Risk Anal., 36, 5773, https://doi.org/10.1111/risa.12432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leavitt, W. M., and J. J. Kiefer, 2006: Infrastructure interdependency and the creation of a normal disaster: The case of Hurricane Katrina and the city of New Orleans. Public Works Manage. Policy, 10, 306314, https://doi.org/10.1177/1087724X06289055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218224, https://doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and M. P. Hoerling, 2016: The physics of drought in the U.S. central Great Plains. J. Climate, 29, 67836804, https://doi.org/10.1175/JCLI-D-15-0697.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 1999: Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol., 19, 13991410, https://doi.org/10.1002/(SICI)1097-0088(19991115)19:13<1399::AID-JOC457>3.0.CO;2-A.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 41364141, https://doi.org/10.1073/pnas.0306738101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., J. L. Betancourt, S. T. Gray, M. A. Palecki, and H. G. Hidalgo, 2008: Associations of multi-decadal sea-surface temperature variability with US drought. Quat. Int., 188, 3140, https://doi.org/10.1016/j.quaint.2007.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehrotra, R., and A. Sharma, 2006: A nonparametric stochastic downscaling framework for daily rainfall at multiple locations. J. Geophys. Res., 111, D15101, https://doi.org/10.1029/2005JD006637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mehrotra, R., and A. Sharma, 2007: A semi-parametric model for stochastic generation of multi-site daily rainfall exhibiting low-frequency variability. J. Hydrol., 335, 180193, https://doi.org/10.1016/j.jhydrol.2006.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J. N. Paegle, and R. W. Higgins, 1997: Atmospheric processes associated with summer floods and droughts in the central United States. J. Climate, 10, 30283046, https://doi.org/10.1175/1520-0442(1997)010<3028:APAWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1966: Nature and possible causes of the northeastern United States drought during 1962–65. Mon. Wea. Rev., 94, 543554, https://doi.org/10.1175/1520-0493(1966)094<0543:NAPCOT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: Twentieth Century Reanalysis (V2c) data. NOAA, https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html.

  • Nigam, S., B. Guan, and A. Ruiz-Barradas, 2011: Key role of the Atlantic Multidecadal Oscillation in 20th century drought and wet periods over the Great Plains. Geophys. Res. Lett., 38, L16713, https://doi.org/10.1029/2011GL048650.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novoa, J., J. Fredes, V. Poblete, and N. B. Yoma, 2018: Uncertainty weighting and propagation in DNN–HMM-based speech recognition. Comput. Speech Lang., 47, 3046, https://doi.org/10.1016/j.csl.2017.06.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, I., A. W. Robertson, U. Lall, and M. A. Cane, 2015: Modeling winter rainfall in Northwest India using a hidden Markov model: Understanding occurrence of different states and their dynamical connections. Climate Dyn., 44, 10031015, https://doi.org/10.1007/s00382-014-2178-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pederson, G. T., S. T. Gray, D. B. Fagre, and L. J. Graumlich, 2006: Long-duration drought variability and impacts on ecosystem services: A case study from Glacier National Park, Montana. Earth Interact., 10, 128, https://doi.org/10.1175/EI153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pinter, N., 2005: One step forward, two steps back on U.S. floodplains. Science, 308, 207208, https://doi.org/10.1126/science.1108411.

  • Prairie, J., K. Nowak, B. Rajagopalan, U. Lall, and T. Fulp, 2008: A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data. Water Resour. Res., 44, W06423, https://doi.org/10.1029/2007WR006684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27, 23812399, https://doi.org/10.1029/91WR00690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., S. Kirshner, and P. Smyth, 2004: Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate, 17, 44074424, https://doi.org/10.1175/JCLI-3216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Iturbe, I., 1969: Applications of the theory of runs to hydrology. Water Resour. Res., 5, 14221426, https://doi.org/10.1029/WR005i006p01422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russo, T. A., and U. Lall, 2017: Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci., 10, 105108, https://doi.org/10.1038/ngeo2883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salas, J. D., C. Fu, A. Cancelliere, D. Dustin, D. Bode, A. Pineda, and E. Vincent, 2005: Characterizing the severity and risk of drought in the Poudre River, Colorado. J. Water Resour. Plann. Manage., 131, 383393, https://doi.org/10.1061/(ASCE)0733-9496(2005)131:5(383).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2011: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci. Model Dev., 4, 3345, https://doi.org/10.5194/gmd-4-33-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, https://doi.org/10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., Y. Kushnir, C. Herweijer, N. Naik, and J. Velez, 2005: Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Climate, 18, 40654088, https://doi.org/10.1175/JCLI3522.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Pederson, Y. Kushnir, J. Nakamura, and S. Jurburg, 2012: The 1960s drought and the subsequent shift to a wetter climate in the Catskill Mountains region of the New York City watershed. J. Climate, 25, 67216742, https://doi.org/10.1175/JCLI-D-11-00518.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silliman, B. R., J. van de Koppel, M. D. Bertness, L. E. Stanton, and I. A. Mendelssohn, 2005: Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science, 310, 18031806, https://doi.org/10.1126/science.1118229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • St. George, S., D. M. Meko, and E. R. Cook, 2010: The seasonality of precipitation signals embedded within the North American drought atlas. Holocene, 20, 983988, https://doi.org/10.1177/0959683610365937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stahle, D. W., F. K. Fye, E. R. Cook, and R. D. Griffin, 2007: Tree-ring reconstructed megadroughts over North America since A.D. 1300. Climatic Change, 83, 133149, https://doi.org/10.1007/s10584-006-9171-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stanford University, 2016: National Performance of Dams Program. Stanford University, http://npdp.stanford.edu/.

  • Steinschneider, S., M. Ho, E. R. Cook, and U. Lall, 2016: Can PDSI inform extreme precipitation?: An exploration with a 500 year long paleoclimate reconstruction over the U.S. Water Resour. Res., 52, 38663880, https://doi.org/10.1002/2016WR018712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and U. Lall, 2015: Spatially coherent trends of annual maximum daily precipitation in the United States. Geophys. Res. Lett., 42, 97819789, https://doi.org/10.1002/2015GL066483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., and D. L. R. Hodson, 2005: Atlantic Ocean forcing of North American and European summer climate. Science, 309, 115118, https://doi.org/10.1126/science.1109496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyer, M., and G. Kuczera, 2003a: A hidden Markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach. J. Hydrol., 275, 1226, https://doi.org/10.1016/S0022-1694(02)00412-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thyer, M., and G. Kuczera, 2003b: A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis. J. Hydrol., 275, 2748, https://doi.org/10.1016/S0022-1694(02)00411-0.

    • Crossref
    • Search Google Scholar