Abstract
Evolving patterns of droughts and wet spells in the conterminous United States (CONUS) are examined over 555 years using a tree-ring-based paleoclimate reconstruction of the modified Palmer drought severity index (PDSI). A hidden Markov model is used as an unsupervised method of classifying climate states and quantifying the temporal evolution from one state to another. Modeling temporal variability in spatial patterns of drought and wet spells provides the ability to objectively assess and simulate historical persistence and recurrence of similar patterns. The Viterbi algorithm reveals the probable sequence of states through time, enabling an examination of temporal and spatial features and associated large-scale climate forcing. Distinct patterns of sea surface temperature that are known to enhance or inhibit rainfall are associated with some states. Using the current CONUS PDSI field the model can be used to simulate the space–time PDSI pattern over the next few years, or unconditional simulations can be used to derive estimates of spatially concurrent PDSI patterns and their persistence and intensity across the CONUS.
Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0182.s1.
© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).