Interdecadal Changes in the Leading Ocean Forcing of Sahelian Rainfall Interannual Variability: Atmospheric Dynamics and Role of Multidecadal SST Background

Roberto Suárez-Moreno Department of Geophysics and Meteorology, Universidad Complutense de Madrid, and Instituto de Geociencias, Universidad Complutense de Madrid–CSIC, Madrid, Spain

Search for other papers by Roberto Suárez-Moreno in
Current site
Google Scholar
PubMed
Close
,
Belén Rodríguez-Fonseca Department of Geophysics and Meteorology, Universidad Complutense de Madrid, and Instituto de Geociencias, Universidad Complutense de Madrid–CSIC, Madrid, Spain

Search for other papers by Belén Rodríguez-Fonseca in
Current site
Google Scholar
PubMed
Close
,
Jesús A. Barroso Department of Geophysics and Meteorology, Universidad Complutense de Madrid, Madrid, Spain

Search for other papers by Jesús A. Barroso in
Current site
Google Scholar
PubMed
Close
, and
Andreas H. Fink Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Andreas H. Fink in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The atmospheric response to global sea surface temperatures is the leading cause of rainfall variability in the West African Sahel. On interannual periodicities, El Niño–Southern Oscillation, the Atlantic equatorial mode, and Mediterranean warm/cold events primarily drive variations of summer rainfall over the Sahel. Nevertheless, the rainfall response to these modes of interannual SST variability has been suggested to be unstable throughout the observational record. This study explores changes in the leading patterns of covariability between Sahel rainfall and SSTs, analyzing the dynamical mechanisms at work to explain the nonstationary relationship between anomalies in these two fields. A new network of rain gauge stations across West Africa is used for the first time to investigate these instabilities during the period 1921–2010. A hypothesis is raised that the underlying SST background seems to favor some interannual teleconnections and inhibit others in terms of the cross-equatorial SST gradients and associated impacts on the location of the intertropical convergence zone. Results of this study are relevant for improving the seasonal predictability of summer rainfall in the Sahel.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0367.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roberto Suárez-Moreno, roberto.suarez@fis.ucm.es

Abstract

The atmospheric response to global sea surface temperatures is the leading cause of rainfall variability in the West African Sahel. On interannual periodicities, El Niño–Southern Oscillation, the Atlantic equatorial mode, and Mediterranean warm/cold events primarily drive variations of summer rainfall over the Sahel. Nevertheless, the rainfall response to these modes of interannual SST variability has been suggested to be unstable throughout the observational record. This study explores changes in the leading patterns of covariability between Sahel rainfall and SSTs, analyzing the dynamical mechanisms at work to explain the nonstationary relationship between anomalies in these two fields. A new network of rain gauge stations across West Africa is used for the first time to investigate these instabilities during the period 1921–2010. A hypothesis is raised that the underlying SST background seems to favor some interannual teleconnections and inhibit others in terms of the cross-equatorial SST gradients and associated impacts on the location of the intertropical convergence zone. Results of this study are relevant for improving the seasonal predictability of summer rainfall in the Sahel.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0367.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Roberto Suárez-Moreno, roberto.suarez@fis.ucm.es

Supplementary Materials

    • Supplemental Materials (DOCX 37.23 KB)
Save
  • Adam, O., T. Bischoff, and T. Schneider, 2016a: Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J. Climate, 29, 32193230, https://doi.org/10.1175/JCLI-D-15-0512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., T. Bischoff, and T. Schneider, 2016b: Seasonal and interannual variations of the energy flux equator and ITCZ. Part II: Zonally varying shifts of the ITCZ. J. Climate, 29, 72817293, https://doi.org/10.1175/JCLI-D-15-0710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banacos, P. C., and D. M. Schultz, 2005: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351366, https://doi.org/10.1175/WAF858.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biasutti, M., 2013: Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos., 118, 16131623, https://doi.org/10.1002/jgrd.50206.

  • Bijlsma, S. J., L. M. Hafkenscheid, and P. Lynch, 1986: Computation of the streamfunction and velocity potential and reconstruction of the wind field. Mon. Wea. Rev., 114, 15471551, https://doi.org/10.1175/1520-0493(1986)114<1547:COTSAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2014: Energetic constraints on the position of the intertropical convergence zone. J. Climate, 27, 49374951, https://doi.org/10.1175/JCLI-D-13-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bischoff, T., and T. Schneider, 2016: The equatorial energy balance, ITCZ position, and double ITCZ bifurcations. J. Climate, 29, 29973013, https://doi.org/10.1175/JCLI-D-15-0328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. H. Whetton, 2001: Modes of SST variability and the fluctuation of global mean temperature. Climate Dyn., 17, 889901, https://doi.org/10.1007/s003820100152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherry, S., 1996: Singular value decomposition analysis and canonical correlation analysis. J. Climate, 9, 20032009, https://doi.org/10.1175/1520-0442(1996)009<2003:SVDAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and S. E. Zebiak, 2000: Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys. Res. Lett., 27, 36873690, https://doi.org/10.1029/1999GL011268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., Y. Kushnir, and A. Giannini, 2002: Deconstructing Atlantic intertropical convergence zone variability: Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J. Geophys. Res., 107, 4004, https://doi.org/10.1029/2000JD000307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., 2014: El Niño physics and El Niño predictability. Annu. Rev. Mar. Sci., 6, 7999, https://doi.org/10.1146/annurev-marine-010213-135026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., P. J. Lamb, K. E. Trenberth, M. Hulme, P. D. Jones, and P. Xie, 2004: The recent Sahel drought is real. Int. J. Climatol., 24, 13231331, https://doi.org/10.1002/joc.1083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dayan, H., J. Vialard, T. Izumo, and M. Lengaigne, 2014: Does sea surface temperature outside the tropical Pacific contribute to enhanced ENSO predictability? Climate Dyn., 43, 13111325, https://doi.org/10.1007/s00382-013-1946-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diallo, I., M. B. Sylla, M. Camara, and A. T. Gaye, 2013: Interannual variability of rainfall over the Sahel based on multiple regional climate models simulations. Theor. Appl. Climatol., 113, 351362, https://doi.org/10.1007/s00704-012-0791-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diatta, S., and A. H. Fink, 2014: Statistical relationship between remote climate indices and West African monsoon variability. Int. J. Climatol., 34, 33483367, https://doi.org/10.1002/joc.3912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, and D. McGee, 2013: The relationship between ITCZ location and cross-equatorial atmospheric heat transport: From the seasonal cycle to the Last Glacial Maximum. J. Climate, 26, 35973618, https://doi.org/10.1175/JCLI-D-12-00467.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donohoe, A., J. Marshall, D. Ferreira, K. Armour, and D. McGee, 2014: The interannual variability of tropical precipitation and interhemispheric energy transport. J. Climate, 27, 33773392, https://doi.org/10.1175/JCLI-D-13-00499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fink, A. H., and Coauthors, 2017: Mean climate and seasonal cycle. Meteorology of Tropical West Africa: The Forecasters’ Handbook, D. J. Parker and M. Diop-Kane, Eds., John Wiley and Sons, 1–39.

  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., and S. Janicot, 1996: Sea surface temperature fields associated with West African rainfall anomaly types. J. Climate, 9, 29352940, https://doi.org/10.1175/1520-0442(1996)009<2935:SSTFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., S. Trzaska, and S. Janicot, 1998: Evolution of the relationship between near global and Atlantic SST modes and the rainy season in West Africa: Statistical analyses and sensitivity experiments. Climate Dyn., 14, 353368, https://doi.org/10.1007/s003820050228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., and Coauthors, 2010: Impacts of warm and cold situations in the Mediterranean basins on the West African monsoon: Observed connection patterns (1979–2006) and climate simulations. Climate Dyn., 35, 95114, https://doi.org/10.1007/s00382-009-0599-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fontaine, B., P.-A. Monerie, M. Gaetani, and P. Roucou, 2011: Climate adjustments over the African-Indian monsoon regions accompanying Mediterranean Sea thermal variability. J. Geophys. Res., 116, D23122, https://doi.org/10.1029/2011JD016273.

    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaetani, M., B. Fontaine, P. Roucou, and M. Baldi, 2010: Influence of the Mediterranean Sea on the West African monsoon: Intraseasonal variability in numerical simulations. J. Geophys. Res., 115, D24115, https://doi.org/10.1029/2010JD014436.

    • Search Google Scholar
    • Export Citation
  • Gaetani, M., C. Flamant, S. Bastin, S. Janicot, C. Lavaysse, F. Hourdin, P. Braconnot, and S. Bony, 2017: West African monsoon dynamics and precipitation: The competition between global SST warming and CO2 increase in CMIP5 idealized simulations. Climate Dyn., 48, 13531373, https://doi.org/10.1007/s00382-016-3146-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 10271030, https://doi.org/10.1126/science.1089357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giannini, A., R. Saravanan, and P. Chang, 2005: Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Climate Dyn., 25, 517535, https://doi.org/10.1007/s00382-005-0056-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., and S. E. Nicholson, 2001: A study of the dynamic factors influencing the rainfall variability in the West African Sahel. J. Climate, 14, 13371359, https://doi.org/10.1175/1520-0442(2001)014<1337:ASOTDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., and K. H. Cook, 2008: Ocean warming and late-twentieth-century Sahel drought and recovery. J. Climate, 21, 37973814, https://doi.org/10.1175/2008JCLI2055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janicot, S., V. Moron, and B. Fontaine, 1996: Sahel droughts and ENSO dynamics. Geophys. Res. Lett., 23, 515518, https://doi.org/10.1029/96GL00246.

  • Janicot, S., A. Harzallah, B. Fontaine, and V. Moron, 1998: West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J. Climate, 11, 18741882, https://doi.org/10.1175/1520-0442-11.8.1874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janicot, S., S. Trzaska, and I. Poccard, 2001: Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Climate Dyn., 18, 303320, https://doi.org/10.1007/s003820100172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., 1988: An investigation of interannual rainfall variability in Africa. J. Climate, 1, 240255, https://doi.org/10.1175/1520-0442(1988)001<0240:AIOIRV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, M., and A. Voldoire, 2009: Influence of ENSO on the West African monsoon: Temporal aspects and atmospheric processes. J. Climate, 22, 31933210, https://doi.org/10.1175/2008JCLI2450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joly, M., and A. Voldoire, 2010: Role of the Gulf of Guinea in the inter-annual variability of the West African monsoon: What do we learn from CMIP3 coupled simulations? Int. J. Climatol., 30, 18431856, https://doi.org/10.1002/joc.2026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., L. Ferranti, and A. M. Tompkins, 2006: Response to the summer of 2003 Mediterranean SST anomalies over Europe and Africa. J. Climate, 19, 54395454, https://doi.org/10.1175/JCLI3916.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kraus, E. B., 1977: Subtropical droughts and cross-equatorial energy transports. Mon. Wea. Rev., 105, 10091018, https://doi.org/10.1175/1520-0493(1977)105<1009:SDACEE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 2011: Progress in understanding of weather systems in West Africa. Atmos. Sci. Lett., 12, 712, https://doi.org/10.1002/asl.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1994: A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J. Climate, 7, 11841207, https://doi.org/10.1175/1520-0442(1994)007<1184:AMSOTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, S. Janicot, D. J. Parker, J.-P. Lafore, B. Sultan, and J. Pelon, 2009: Seasonal evolution of the West African heat low: A climatological perspective. Climate Dyn., 33, 313330, https://doi.org/10.1007/s00382-009-0553-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., C. Flamant, and S. Janicot, 2010: Regional-scale convection patterns during strong and weak phases of the Saharan heat low. Atmos. Sci. Lett., 11, 255264, https://doi.org/10.1002/asl.284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Barbè, L., T. Lebel, and D. Tapsoba, 2002: Rainfall variability in West Africa during the years 1950–90. J. Climate, 15, 187202, https://doi.org/10.1175/1520-0442(2002)015<0187:RVIWAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Losada, T., B. Rodríguez-Fonseca, S. Janicot, S. Gervois, F. Chauvin, and P. Ruti, 2010: A multi-model approach to the Atlantic equatorial mode: Impact on the West African monsoon. Climate Dyn., 35, 2943, https://doi.org/10.1007/s00382-009-0625-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Losada, T., B. Rodríguez-Fonseca, E. Mohino, J. Bader, S. Janicot, and C. R. Mechoso, 2012: Tropical SST and Sahel rainfall: A non-stationary relationship. Geophys. Res. Lett., 39, L12705, https://doi.org/10.1029/2012GL052423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Donohoe, D. Ferreira, and D. McGee, 2014: The ocean’s role in setting the mean position of the inter-tropical convergence zone. Climate Dyn., 42, 19671979, https://doi.org/10.1007/s00382-013-1767-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motion in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohino, E., B. Rodríguez-Fonseca, C. R. Mechoso, S. Gervois, P. Ruti, and F. Chauvin, 2011a: Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J. Climate, 24, 38783891, https://doi.org/10.1175/2011JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohino, E., B. Rodríguez-Fonseca, T. Losada, S. Gervois, S. Janicot, J. Bader, P. Ruti, and F. Chauvin, 2011b: Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison. Climate Dyn., 37, 17071725, https://doi.org/10.1007/s00382-011-1093-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohino, E., S. Janicot, and J. Bader, 2011c: Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Climate Dyn., 37, 419440, https://doi.org/10.1007/s00382-010-0867-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., R. Vautard, and M. Ghil, 1998: Trends, interdecadal and interannual oscillation in global sea-surface temperatures. Climate Dyn., 14, 545569, https://doi.org/10.1007/s003820050241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munemoto, M., and Y. Tachibana, 2012: The recent trend of increasing precipitation in Sahel and the associated inter-hemispheric dipole of global SST. Int. J. Climatol., 32, 13461353, https://doi.org/10.1002/joc.2356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 2000: Land surface processes and Sahel climate. Rev. Geophys., 38, 117139, https://doi.org/10.1029/1999RG900014.

  • Nicholson, S., 2009a: A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dyn., 32, 11551171, https://doi.org/10.1007/s00382-008-0514-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 2009b: On the factors modulating the intensity of the tropical rainbelt over West Africa. Int. J. Climatol., 29, 673689, https://doi.org/10.1002/joc.1702.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S., 2013: The West African Sahel: A review of recent studies on the rainfall regime and its interannual variability. ISRN Meteor., 453521, https://doi.org/10.1155/2013/453521.

    • Search Google Scholar
    • Export Citation
  • Nicholson, S., and P. J. Webster, 2007: A physical basis for the interannual variability of rainfall in the Sahel. Quart. J. Roy. Meteor. Soc., 133, 20652084, https://doi.org/10.1002/qj.104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholson, S., A. I. Barcilon, and M. Challa, 2008: An analysis of West African dynamics using a linearized GCM. J. Atmos. Sci., 65, 11821203, https://doi.org/10.1175/2007JAS2194.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Okumura, Y., and S.-P. Xie, 2004: Interaction of the Atlantic equatorial cold tongue and the African monsoon. J. Climate, 17, 35893602, https://doi.org/10.1175/1520-0442(2004)017<3589:IOTAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., J. Bader, and D. Matei, 2015: Northern-hemispheric differential warming is the key to understanding the discrepancies in the projected Sahel rainfall. Nat. Commun., 6, 5985, https://doi.org/10.1038/ncomms6985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J.-Y., J. Bader, and D. Matei, 2016: Anthropogenic Mediterranean warming essential driver for present and future Sahel rainfall. Nat. Climate Change, 6, 941945, https://doi.org/10.1038/nclimate3065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polo, I., B. Rodríguez-Fonseca, T. Losada, and J. García-Serrano, 2008: Tropical Atlantic modes (1979–2002). Part I: Time-evolving SST modes related to West African rainfall. J. Climate, 21, 64576475, https://doi.org/10.1175/2008JCLI2607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and K. H. Cook, 2012: Role of the West African westerly jet in Sahel rainfall variations. J. Climate, 25, 28802896, https://doi.org/10.1175/JCLI-D-11-00394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Redelsperger, J.-L., C. D. Thorncroft, A. Diedhiou, T. Lebel, D. J. Parker, and J. Polcher, 2006: African Monsoon Multidisciplinary Analysis: An international research project and field campaign. Bull. Amer. Meteor. Soc., 87, 17391746, https://doi.org/10.1175/BAMS-87-12-1739.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., I. Polo, J. García-Serrano, L. Losada, E. Mohino, C. R. Mechoso, and F. Kucharski, 2009: Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett., 36, L20705, https://doi.org/10.1029/2009GL040048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2011: Interannual and decadal SST-forced responses of the West African monsoon. Atmos. Sci. Lett., 12, 6774, https://doi.org/10.1002/asl.308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2015: Variability and predictability of West African droughts: A review on the role of sea surface temperature anomalies. J. Climate, 28, 40344060, https://doi.org/10.1175/JCLI-D-14-00130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez-Fonseca, B., and Coauthors, 2016: A review of ENSO influence on the North Atlantic. A non-stationary signal. Atmosphere, 7, 87, https://doi.org/10.3390/atmos7070087.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2001: Teleconnections between the tropical Pacific and the Sahel. Quart. J. Roy. Meteor. Soc., 127, 16831706, https://doi.org/10.1002/qj.49712757512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2003: The impact of Mediterranean SSTs on the Sahelian rainfall season. J. Climate, 16, 849862, https://doi.org/10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., 2013: Simulating SST teleconnections to Africa: What is the state of the art? J. Climate, 26, 53975418, https://doi.org/10.1175/JCLI-D-12-00761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowell, D. P., C. K. Folland, K. Maskell, and M. N. Ward, 1995: Variability of summer rainfall over tropical North Africa (1906–92): Observations and modelling. Quart. J. Roy. Meteor. Soc., 121, 669704, https://doi.org/10.1002/qj.49712152311.

    • Search Google Scholar
    • Export Citation
  • Sanogo, S., A. H. Fink, J. A. Omotosho, A. Ba, R. Redl, and V. Ermert, 2015: Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int. J. Climatol., 35, 45894605, https://doi.org/10.1002/joc.4309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stockdale, T. N., and Coauthors, 2010: Understanding and predicting seasonal-to-interannual climate variability—The producer perspective. Procedia Environ. Sci., 1, 5580, https://doi.org/10.1016/j.proenv.2010.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suárez-Moreno, R., and B. Rodríguez-Fonseca, 2015: S4CAST v2.0: Sea surface temperature based statistical seasonal forecast model. Geosci. Model Dev., 8, 36393658, https://doi.org/10.5194/gmd-8-3639-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., and S. Janicot, 2000: Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys. Res. Lett., 27, 33533356, https://doi.org/10.1029/1999GL011285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., and M. Gaetani, 2016: Agriculture in West Africa in the twenty-first century: Climate change and impacts scenarios, and potential for adaptation. Front. Plant Sci., 7, 1262, https://doi.org/10.3389/fpls.2016.01262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., C. Baron, M. Dingkuhn, B. Sarr, and S. Janicot, 2005: Agricultural impacts of large-scale variability of the West African monsoon. Agric. For. Meteor., 128, 93110, https://doi.org/10.1016/j.agrformet.2004.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sultan, B., B. Barbier, J. Fortilus, S. M. Mbaye, and G. Leclerc, 2010: Estimating the potential economic value of seasonal forecasts in West Africa: A long-term ex-ante assessment in Senegal. Wea. Climate Soc., 2, 6987, https://doi.org/10.1175/2009WCAS1022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, https://doi.org/10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., C. Deser, J.-Y. Yu, P. DiNezio, and A. Clement, 2012: El Niño–Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment, P. W. Glynn, D. Manzello, and I. C. Enochs, Eds., Springer Science, 3–19.

  • Widmann, M., 2005: One-dimensional CCA and SVD, and their relationship to regression maps. J. Climate, 18, 27852792, https://doi.org/10.1175/JCLI3424.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1762 1058 345
PDF Downloads 618 98 9