Components and Mechanisms of Hydrologic Cycle Changes over North America at the Last Glacial Maximum

Juan M. Lora Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Juan M. Lora in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines the differences in the moisture budget over North America between the Last Glacial Maximum (LGM) and modern climate, as simulated by nine models from Paleoclimate Modelling Intercomparison Project phase 3. The results help elucidate the components and mechanisms of the LGM hydrologic cycle. The models predict substantial increases in winter precipitation minus evaporation (PE) over the ice-free parts of western North America with respect to the modern climate, primarily because of increases in moisture convergence by the mean flow. In summer they predict PE increases from the Great Plains to the southeastern margin of the ice sheet—driven by large decreases in E—that are due to a combination of increased convergence by the mean flow and transient eddies. In both seasons, the LGM–modern changes in PE are dominated by changes in the circulation, rather than by changes in atmospheric water vapor. Compared to a proxy reconstruction of LGM–modern changes in P, the simulated P responses show modest skill. They generally reproduce the reconstruction in the western part of North America but underestimate the indicated drying of the eastern part. The models that score best tend to simulate more drying of the eastern part as a result of increased moisture divergence by the mean flow. In various regions, there are trade-offs between contributions from the mean flow and transient eddies, pointing to changes in variability during the LGM; however, further work to examine such changes requires higher-frequency model output.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan M. Lora, jlora@ucla.edu

Abstract

This study examines the differences in the moisture budget over North America between the Last Glacial Maximum (LGM) and modern climate, as simulated by nine models from Paleoclimate Modelling Intercomparison Project phase 3. The results help elucidate the components and mechanisms of the LGM hydrologic cycle. The models predict substantial increases in winter precipitation minus evaporation (PE) over the ice-free parts of western North America with respect to the modern climate, primarily because of increases in moisture convergence by the mean flow. In summer they predict PE increases from the Great Plains to the southeastern margin of the ice sheet—driven by large decreases in E—that are due to a combination of increased convergence by the mean flow and transient eddies. In both seasons, the LGM–modern changes in PE are dominated by changes in the circulation, rather than by changes in atmospheric water vapor. Compared to a proxy reconstruction of LGM–modern changes in P, the simulated P responses show modest skill. They generally reproduce the reconstruction in the western part of North America but underestimate the indicated drying of the eastern part. The models that score best tend to simulate more drying of the eastern part as a result of increased moisture divergence by the mean flow. In various regions, there are trade-offs between contributions from the mean flow and transient eddies, pointing to changes in variability during the LGM; however, further work to examine such changes requires higher-frequency model output.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Juan M. Lora, jlora@ucla.edu
Save
  • Adler, R. G., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlein, P. J., and Coauthors, 1998: Paleoclimate simulations for North America over the past 21,000 years: Features of the simulated climate and comparisons with paleoenvironmental data. Quat. Sci. Rev., 49, 549585, https://doi.org/10.1016/s0277-3791(98)00012-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlein, P. J., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775802, https://doi.org/10.1007/s00382-010-0904-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhattacharya, T., J. E. Tierney, and P. DiNezio, 2017: Glacial reduction of the North American Monsoon via surface cooling and atmospheric ventilation. Geophys. Res. Lett., 44, 51135122, https://doi.org/10.1002/2017GL073632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., 2012: Thermodynamic scaling of the hydrological cycle of the Last Glacial Maximum. J. Climate, 25, 9921006, https://doi.org/10.1175/JCLI-D-11-00010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braconnot, P., S. Harrison, M. Kageyama, P. Bartlein, V. Masson-Delmotte, A. Abe-Ouchi, B. Otto-Bliesner, and Y. Zhao, 2012: Evaluation of climate models using palaeoclimatic data. Nat. Climate Change, 2, 417424, https://doi.org/10.1038/nclimate1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., E. R. Toracinta, H. Wei, R. J. Oglesby, J. L. Fastook, and T. J. Hughes, 2004: Polar MM5 simulations of the winter climate of the Laurentide Ice Sheet at the LGM. J. Climate, 17, 34153433, https://doi.org/10.1175/1520-0442(2004)017<3415:PMSOTW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bromwich, D. H., E. R. Toracinta, R. J. Oglesby, J. L. Fastook, and T. J. Hughes, 2005: LGM summer climate on the southern margin of the Laurentide Ice Sheet: Wet or dry? J. Climate, 18, 33173338, https://doi.org/10.1175/JCLI3480.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2015: The response of precipitation minus evaporation to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Climate, 28, 80788092, https://doi.org/10.1175/JCLI-D-15-0369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chadwick, R., I. Boutle, and G. Martin, 2013: Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. J. Climate, 26, 38033822, https://doi.org/10.1175/JCLI-D-12-00543.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2004: Mechanisms of global warming impacts on regional tropical precipitation. J. Climate, 17, 26882701, https://doi.org/10.1175/1520-0442(2004)017<2688:MOGWIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • COHMAP Members, 1988: Climatic changes of the last 18,000 years: Observations and model simulations. Science, 241, 10431052, https://doi.org/10.1126/science.241.4869.1043.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American Monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/jgrd.50111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., J. E. Smerdon, R. Seager, and S. Coats, 2014: Global warming and 21st century drying. Climate Dyn., 43, 26072627, https://doi.org/10.1007/s00382-014-2075-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1988: Stationary waves of the ice age climate. J. Climate, 1, 807819, https://doi.org/10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., and S. Feng, 2014: Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos., 119, 78637875, https://doi.org/10.1002/2014JD021608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, Q., L. Lin, J. Huang, S. Feng, and A. Gettelman, 2016: Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geophys. Res. Atmos., 121, 28572873, https://doi.org/10.1002/2015JD024075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerhart, L. M., and J. K. Ward, 2010: Plant responses to low [CO2] of the past. New Phytol., 188, 674695, https://doi.org/10.1111/j.1469-8137.2010.03441.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hargreaves, J. C., J. D. Annan, R. Ohgaito, A. Paul, and A. Abe-Ouchi, 2013: Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene. Climate Past, 9, 811823, https://doi.org/10.5194/cp-9-811-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., and Coauthors, 2014: Climate model benchmarking with glacial and mid-Holocene climates. Climate Dyn., 43, 671688, https://doi.org/10.1007/s00382-013-1922-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, S. P., P. J. Bartlein, K. Izumi, G. Li, J. Annan, J. Hargreaves, P. Braconnot, and M. Kageyama, 2015: Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Climate Change, 5, 735743, https://doi.org/10.1038/nclimate2649.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hill, S. A., Y. Ming, I. M. Held, and M. Zhao, 2017: A moist static energy budget–based analysis of the Sahel rainfall response to uniform oceanic warming. J. Climate, 30, 56375660, https://doi.org/10.1175/JCLI-D-16-0785.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hostetler, S., and L. V. Benson, 1990: Paleoclimatic implications of the high stand of Lake Lahontan derived from models of evaporation and lake level. Climate Dyn., 4, 207217, https://doi.org/10.1007/BF00209522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., S.-P. Xie, K. Hu, G. Huang, and R. Huang, 2013: Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci., 6, 357361, https://doi.org/10.1038/ngeo1792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ibarra, D. E., A. E. Egger, K. L. Weaver, C. R. Harris, and K. Maher, 2014: Rise and fall of late Pleistocene pluvial lakes in response to reduced evaporation and precipitation: Evidence from Lake Surprise, California. Geol. Soc. Amer. Bull., 126, 13871415, https://doi.org/10.1130/B31014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and P. J. Valdes, 2000: Impact of the North American ice-sheet orography on the Last Glacial Maximum eddies and snowfall. Geophys. Res. Lett., 27, 15151518, https://doi.org/10.1029/1999GL011274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kageyama, M., and Coauthors, 2017: The PMIP4 contribution to CMIP6—Part 4: Scientific objectives and experimental design of the PMIP4–CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geosci. Model Dev., 10, 40354055, https://doi.org/10.5194/gmd-10-4035-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, S.-J., T. J. Crowley, D. J. Erickson, B. Govindasamy, P. B. Duffy, and B. Y. Lee, 2008: High-resolution climate simulation of the last glacial maximum. Climate Dyn., 31, 116, https://doi.org/10.1007/s00382-007-0332-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., and H. E. Wright, 1985: Simulation of the climate of 18,000 yr BP: Results for the North American/North Atlantic/European sector and comparison with the geologic record. Quat. Sci. Rev., 4, 147187, https://doi.org/10.1016/0277-3791(85)90024-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lachniet, M. S., Y. Asmerom, J. P. Bernal, V. J. Polyak, and L. Vazquez-Selem, 2013: Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y. Proc. Natl. Acad. Sci. USA, 110, 92559260, https://doi.org/10.1073/pnas.1222804110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., and Coauthors, 2009: Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: Energetic study, seasonal cycle, precipitation. Climate Dyn., 32, 593614, https://doi.org/10.1007/s00382-008-0391-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lemons, D. R., M. R. Milligan, and M. A. Chan, 1996: Paleoclimatic implications of late Pleistocene sediment yield rates for the Bonneville Basin, northern Utah. Palaeogeogr. Palaeoclimatol. Palaeoecol., 123, 147159, https://doi.org/10.1016/0031-0182(95)00117-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during the Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, https://doi.org/10.1175/2007JCLI2166.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfverström, M., and J. M. Lora, 2017: Abrupt regime shifts in the North Atlantic atmospheric circulation over the last deglaciation. Geophys. Res. Lett., 44, 80478055, https://doi.org/10.1002/2017GL074274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Löfverström, M., R. Caballero, J. Nilsson, and G. Messori, 2016: Stationary wave reflection as a mechanism for zonalizing the Atlantic winter jet at the LGM. J. Atmos. Sci., 73, 33293342, https://doi.org/10.1175/JAS-D-15-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lora, J. M., J. L. Mitchell, and A. E. Tripati, 2016: Abrupt reorganization of North Pacific and western North American climate during the last deglaciation. Geophys. Res. Lett., 43, 11 79611 804, https://doi.org/10.1002/2016GL071244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lora, J. M., J. L. Mitchell, C. Risi, and A. E. Tripati, 2017: North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophys. Res. Lett., 44, 10511059, https://doi.org/10.1002/2016GL071541.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maher, K., D. E. Ibarra, J. L. Oster, D. M. Miller, J. L. Redwine, M. C. Reheis, and J. W. Harden, 2014: Uranium isotopes in soils as a proxy for past infiltration and precipitation across the western United States. Amer. J. Sci., 314, 821857, https://doi.org/10.2475/04.2014.01.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, https://doi.org/10.1175/JCLI-D-13-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and A. J. Broccoli, 1985: The influence of continental ice sheets on the climate of the Ice Age. J. Geophys. Res., 90, 21672190, https://doi.org/10.1029/JD090iD01p02167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MARGO Project Members, 2009: Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci., 2, 127132, https://doi.org/10.1038/ngeo411.

    • Search Google Scholar
    • Export Citation
  • Merz, N., C. C. Raible, and T. Woollings, 2015: North Atlantic eddy-driven jet in interglacial and glacial winter climates. J. Climate, 28, 39773997, https://doi.org/10.1175/JCLI-D-14-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto-Bliesner, B. L., and Coauthors, 2009: A comparison of PMIP2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at last glacial maximum. Climate Dyn., 32, 799815, https://doi.org/10.1007/s00382-008-0509-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., S. Bordoni, S. B. Kapnick, G. A. Vecchi, L. Jia, T. L. Delworth, S. Underwood, and W. Anderson, 2016: The impact of horizontal resolution on North American monsoon Gulf of California moisture surges in a suite of coupled global climate models. J. Climate, 29, 79117936, https://doi.org/10.1175/JCLI-D-16-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., D. Jolly, and BIOME 6000 participants, 2000: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr., 27, 507519, https://doi.org/10.1046/j.1365-2699.2000.00425.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prentice, I. C., S. P. Harrison, and P. J. Bartlein, 2011: Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol., 189, 988998, https://doi.org/10.1111/j.1469-8137.2010.03620.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rivière, G., A. Laîné, G. Lapeyre, D. Salas-Mélia, and M. Kageyama, 2010: Links between Rossby wave breaking and the North Atlantic Oscillation–Arctic Oscillation in present-day and Last Glacial Maximum climate simulations. J. Climate, 23, 29873008, https://doi.org/10.1175/2010JCLI3372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roderick, M. L., F. Sun, W. H. Lim, and G. D. Farquhar, 2014: A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci., 18, 15751589, https://doi.org/10.5194/hess-18-1575-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., and D. M. W. Frierson, 2012: Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones. Geophys. Res. Lett., 39, L18704, https://doi.org/10.1029/2012GL052910.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scheff, J., R. Seager, and H. Liu, 2017: Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Climate, 30, 65936609, https://doi.org/10.1175/JCLI-D-16-0854.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and G. A. Vecchi, 2010: Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl. Acad. Sci. USA, 107, 21 27721 282, https://doi.org/10.1073/pnas.0910856107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and N. Henderson, 2013: Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Climate, 26, 78767901, https://doi.org/10.1175/JCLI-D-13-00018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316, 11811184, https://doi.org/10.1126/science.1139601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2014: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, https://doi.org/10.1175/JCLI-D-14-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and O. Pauluis, 2012: Tropical and subtropical meridional latent heat transports by disturbances to the zonal mean and their role in the general circulation. J. Atmos. Sci., 69, 18721889, https://doi.org/10.1175/JAS-D-11-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2013: North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J. Climate, 26, 92099245, https://doi.org/10.1175/JCLI-D-12-00592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swann, A. L. S., F. M. Hoffman, C. D. Koven, and J. T. Randerson, 2016: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl. Acad. Sci. USA, 113, 10 01910 024, https://doi.org/10.1073/pnas.1604581113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. S., K. H. Anderson, and P. J. Bartlein, 1999: Quantitative paleoclimatic reconstructions from late Pleistocene plant macrofossils of the Yucca Mountain region. USGS Open-File Rep. 99-338, 38 pp.

    • Crossref
    • Export Citation
  • Trenberth, K. E., and C. J. Guillemot, 1995: Evaluation of the global atmospheric moisture budget as seen from analyses. J. Climate, 8, 22552272, https://doi.org/10.1175/1520-0442(1995)008<2255:EOTGAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ullman, D. J., A. N. LeGrande, A. E. Carlson, F. S. Anslow, and J. M. Licciardi, 2014: Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Climate Past, 10, 487507, https://doi.org/10.5194/cp-10-487-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Unterman, M. B., T. J. Crowley, K. I. Hudges, S.-J. Kim, and D. J. Erickson, 2011: Paleometeorology: High resolution Northern Hemisphere wintertime mid-latitude dynamics during the Last Glacial Maximum. Geophys. Res. Lett., 38, L23702, https://doi.org/10.1029/2011GL049599.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, T., and A. Dai, 2015: The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Climate, 28, 44904512, https://doi.org/10.1175/JCLI-D-14-00363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 763 195 14
PDF Downloads 575 122 11