Satellite-Observed Precipitation Response to Ocean Mesoscale Eddies

Xue Liu Department of Oceanography, Texas A&M University, College Station, Texas, and Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xue Liu in
Current site
Google Scholar
PubMed
Close
,
Ping Chang Department of Oceanography, and Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, and Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Ping Chang in
Current site
Google Scholar
PubMed
Close
,
Jaison Kurian Department of Oceanography, Texas A&M University, College Station, Texas

Search for other papers by Jaison Kurian in
Current site
Google Scholar
PubMed
Close
,
R. Saravanan Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by R. Saravanan in
Current site
Google Scholar
PubMed
Close
, and
Xiaopei Lin Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xiaopei Lin in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Among various forms of atmospheric response to ocean mesoscale eddies, the rainfall response is the most difficult to quantify and is subject to considerable uncertainty. Here the robustness of the rainfall response is examined by comparing three different satellite-derived rainfall datasets: the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), NOAA Climate Prediction Center (CPC) morphing technique (CMORPH) global precipitation, and the newly available Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) that is based on the latest remote sensing technology with finer spatial and temporal resolution. Results show that all datasets exhibit a similar rainfall response to ocean eddies, but the amplitude of the rainfall response is much stronger in IMERG than in the other two, despite the fact that IMERG provides the weakest time-mean rainfall estimate. In situ validation against the NOAA’s Ocean Climate Stations Project (OCS) Kuroshio Extension Observatory (KEO) buoy rainfall measurement shows that IMERG is more accurate in estimating both the mean value of rainfall and its intensity distribution than the other two products, at least in the Kuroshio Extension region. Further analysis reveals that 1) eddy-induced precipitation response is significantly stronger in winter than in summer, and 2) warm-eddy-induced rainfall response is considerably stronger than cold-eddy-induced response, and these asymmetries in rainfall response are more robust in IMERG than in the other two datasets. Documenting and analyzing these asymmetric rainfall responses is important for understanding the potential role of ocean eddies in forcing the large-scale atmospheric circulation and climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xue Liu, xuetamu@gmail.com

Abstract

Among various forms of atmospheric response to ocean mesoscale eddies, the rainfall response is the most difficult to quantify and is subject to considerable uncertainty. Here the robustness of the rainfall response is examined by comparing three different satellite-derived rainfall datasets: the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), NOAA Climate Prediction Center (CPC) morphing technique (CMORPH) global precipitation, and the newly available Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) that is based on the latest remote sensing technology with finer spatial and temporal resolution. Results show that all datasets exhibit a similar rainfall response to ocean eddies, but the amplitude of the rainfall response is much stronger in IMERG than in the other two, despite the fact that IMERG provides the weakest time-mean rainfall estimate. In situ validation against the NOAA’s Ocean Climate Stations Project (OCS) Kuroshio Extension Observatory (KEO) buoy rainfall measurement shows that IMERG is more accurate in estimating both the mean value of rainfall and its intensity distribution than the other two products, at least in the Kuroshio Extension region. Further analysis reveals that 1) eddy-induced precipitation response is significantly stronger in winter than in summer, and 2) warm-eddy-induced rainfall response is considerably stronger than cold-eddy-induced response, and these asymmetries in rainfall response are more robust in IMERG than in the other two datasets. Documenting and analyzing these asymmetric rainfall responses is important for understanding the potential role of ocean eddies in forcing the large-scale atmospheric circulation and climate.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xue Liu, xuetamu@gmail.com
Save
  • Adler, R. F., C. Kidd, G. Petty, M. Morissey, and H. M. Goodman, 2001: Intercomparison of global precipitation products: The Third Precipitation Intercomparison Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 13771396, https://doi.org/10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and P. Xie, 1994: The Global Precipitation Climatology Project: First algorithm intercomparison project. Bull. Amer. Meteor. Soc., 75, 401419, https://doi.org/10.1175/1520-0477(1994)075<0401:TGPCPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, F. O., R. Tomas, J. M. Dennis, D. B. Chelton, N. G. Loeb, and J. L. McClean, 2010: Frontal scale air-sea interaction in high-resolution coupled climate models. J. Climate, 23, 62776291, https://doi.org/10.1175/2010JCLI3665.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, D., L. Papritz, I. Frenger, M. Münnich, and N. Gruber, 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 18721890, https://doi.org/10.1175/JAS-D-14-0195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23 (4), 5269, https://doi.org/10.5670/oceanog.2010.05.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, https://doi.org/10.1175/BAMS-88-1-47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frenger, I., N. Gruber, R. Knutti, and M. Münnich, 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608612, https://doi.org/10.1038/ngeo1863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaube, P., D. B. Chelton, R. M. Samelson, M. G. Schlax, and L. W. O’Neill, 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104132, https://doi.org/10.1175/JPO-D-14-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawcroft, M. K., L. C. Shaffrey, K. I. Hodges, and H. F. Dacre, 2012: How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL053866.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z., L. Yang, F. Tian, G. Ni, A. Hou, and H. Liu, 2017: Intercomparisons of rainfall estimates from the TRMM and GPM multisatellite products over the upper Mekong River basin. J. Hydrometeor., 18, 413430, https://doi.org/10.1175/JHM-D-16-0198.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and E. J. Nelkin, 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, https://doi.org/10.1007/978-90-481-2915-7_1.

    • Crossref
    • Export Citation
  • Huffman, G. J., and Coauthors, Eds., 2015a: The climate data guide: TRMM: Tropical Rainfall Measuring Mission. NCAR–UCAR, accessed 18 June 2015, https://climatedataguide.ucar.edu/climate-data/trmm-tropical-rainfall-measuring-mission.

  • Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, and P. Xie, 2015b: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc., version 4.5, 26 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf.

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015c: Integrated Multi-satellite Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015d: Day 1 IMERG final run release notes. NASA Tech. Note., 9 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf.

  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms. J. Hydrometeor., 4, 10881104, https://doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurian, J., F. Colas, X. Capet, J. C. McWilliams, and D. B. Chelton, 2011: Eddy properties in the California Current System. J. Geophys. Res., 116, C08027, https://doi.org/10.1029/2010JC006895.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., 2016: Comparison of Integrated Multisatellite Retrievals for GPM (IMERG) and TRMM Multisatellite Precipitation Analysis (TMPA) monthly precipitation products: Initial results. J. Hydrometeor., 17, 777790, https://doi.org/10.1175/JHM-D-15-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., H. Xu, C. Dong, P. Lin, and Y. Liu, 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 63136330, https://doi.org/10.1002/2014JD022930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2015: Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep., 5, 17785, https://doi.org/10.1038/srep17785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., and Coauthors, 2016: Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535, 533537, https://doi.org/10.1038/nature18640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, X., P. Chang, R. Saravanan, R. Montuoro, H. Nakamura, D. Wu, X. Lin, and L. Wu, 2017: Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Climate, 30, 18611880, https://doi.org/10.1175/JCLI-D-16-0154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minobe, S., M. Miyashita, A. Kuwano-Yoshida, H. Tokinaga, and S.-P. Xie, 2010: Atmospheric response to the Gulf Stream: Seasonal variations. J. Climate, 23, 36993719, https://doi.org/10.1175/2010JCLI3359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, S. K. Esbensen, and F. J. Wentz, 2005: High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas Return Current. J. Climate, 18, 27062723, https://doi.org/10.1175/JCLI3415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255281, https://doi.org/10.1175/2009JCLI2613.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2012: Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25, 59165942, https://doi.org/10.1175/JCLI-D-11-00230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, K.-A., P. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res., 111, C03021, https://doi.org/10.1029/2005JC003016.

    • Search Google Scholar
    • Export Citation
  • Picot, N., K. Case, S. Desai, and P. Vincent, 2003: AVISO and PODAAC user handbook: IGDR and GDR Jason products. NASA JPL Tech. Doc. D-21352, 124 pp.

  • Prakash, S., A. K. Mitra, D. S. Pai, and A. AghaKouchak, 2016: From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour., 88, 17, https://doi.org/10.1016/j.advwatres.2015.11.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 6078, https://doi.org/10.1016/j.dynatmoce.2013.04.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and M. J. McPhaden, 2003: Multiple time- and space-scale comparisons of ATLAS buoy rain gauge measurements with TRMM satellite precipitation measurements. J. Appl. Meteor., 42, 10451059, https://doi.org/10.1175/1520-0450(2003)042<1045:MTASCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, G., Y. Ma, D. Long, L. Zhong, and Y. Hong, 2016: Evaluation of GPM Day-1 IMERG and TMPA version-7 legacy products over mainland China at multiple spatiotemporal scales. J. Hydrol., 533, 152167, https://doi.org/10.1016/j.jhydrol.2015.12.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., Y. Tanimoto, and S.-P. Xie, 2005: SST-induced surface wind variations over the Brazil–Malvinas confluence: Satellite and in situ observations. J. Climate, 18, 34703482, https://doi.org/10.1175/JCLI3485.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195208, https://doi.org/10.1175/BAMS-85-2-195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, R., F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, 2017: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos., 122, 910924, https://doi.org/10.1002/2016JD025418.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1612 597 172
PDF Downloads 597 83 9