• Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alexander, L. V., and Coauthors, 2013: Summary of policymakers. Climate Change 2013: The Physical Basis, T. F. Stocker et al., Eds., Cambridge University Press, 3–29.

  • Allen, R. J., 2015: A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. J. Geophys. Res., 120, 90879102, https://doi.org/10.1002/2015JD023623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and S. C. Sherwood, 2011: The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community Atmosphere Model. Climate Dyn., 36, 19591978, https://doi.org/10.1007/s00382-010-0898-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and O. Ajoku, 2016: Future aerosol reductions and widening of the northern tropical belt. J. Geophys. Res., 121, 67656786, https://doi.org/10.1002/2016JD024803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012a: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, https://doi.org/10.1038/nature11097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012b: The equilibrium response to idealized thermal forcings in a comprehensive GCM: Implications for recent tropical expansion. Atmos. Chem. Phys., 12, 47954816, https://doi.org/10.5194/acp-12-4795-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., A. T. Evan, and B. B. B. Booth, 2015: Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Climate, 28, 82198246, https://doi.org/10.1175/JCLI-D-15-0148.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban-Weiss, G. A., L. Cao, G. Bala, and K. Caldeira, 2012: Dependence of climate forcing and response on the altitude of black carbon aerosols. Climate Dyn., 38, 897911, https://doi.org/10.1007/s00382-011-1052-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher, 2013: Estimates of aerosol radiative forcing from the MACC re-analysis. Atmos. Chem. Phys., 13, 20452062, https://doi.org/10.5194/acp-13-2045-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677691, https://doi.org/10.1002/qj.49711247307.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, X. Liu, D. M. W. Frierson, and D. L. Hartmann, 2013: The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. J. Geophys. Res., 118, 51365146, https://doi.org/10.1002/jgrd.50461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chemke, R., 2017: Atmospheric energy transfer response to global warming. Quart. J. Roy. Meteor. Soc., 143, 22962308, https://doi.org/10.1002/qj.3086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E.-S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566571, https://doi.org/10.1038/ngeo2988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102, https://doi.org/10.1029/2004JD005441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dagan, G., and R. Chemke, 2016: The effect of subtropical aerosol loading on equatorial precipitation. Geophys. Res. Lett., 43, 11 04811 056, https://doi.org/10.1002/2016GL071206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dagan, G., I. Koren, O. Altaratz, and R. H. Heiblum, 2016: Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields. Sci. Rep., 6, 38769, https://doi.org/10.1038/srep38769.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dagan, G., I. Koren, O. Altaratz, and R. H. Heiblum, 2017: Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading. Atmos. Chem. Phys., 17, 74357444, https://doi.org/10.5194/acp-17-7435-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1 (3), 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Edmon, J. H. J., B. J. Hoskins, and M. E. McIntyre, 1980: Eliassen–Palm cross sections for the troposphere. J. Atmos. Sci., 37, 26002616, https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., and Y.-T. Hwang, 2012: Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J. Climate, 25, 720733, https://doi.org/10.1175/JCLI-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Yung, 1995: Atmospheric Radiation: Theoretical Basis. 2nd ed. Oxford University Press, 519 pp.

  • Haywood, J. M., A. Jones, N. Bellouin, and D. Stephenson, 2013: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nature Climate Change, 3, 660665, https://doi.org/10.1038/nclimate1857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 2000: The general circulation of the atmosphere. Program in Geophysical Fluid Dynamics, Woods Hole Oceanographic Institution, 70 pp., https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/woods_hole.pdf.

  • Held, I. M., and A. Y. Hou, 1980: Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515533, https://doi.org/10.1175/1520-0469(1980)037<0515:NASCIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hwang, Y. T., D. M. W. Frierson, and S. M. Kang, 2013: Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett., 40, 28452850, https://doi.org/10.1002/grl.50502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, A., and Coauthors, 2013: The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys., 13, 40734109, https://doi.org/10.5194/acp-13-4073-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J. R., and A. J. Schweiger, 1998: Tools for atmospheric radiative transfer: Streamer and FluxNet. Comput. Geosci., 24, 443451, https://doi.org/10.1016/S0098-3004(97)00130-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H., S. M. Kang, Y.-T. Hwang, and Y.-M. Yang, 2015: Sensitivity of the climate response to the altitude of black carbon in the northern subtropics in an aquaplanet GCM. J. Climate, 28, 63516359, https://doi.org/10.1175/JCLI-D-15-0037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors, 2013: MAC-v1: A new global aerosol climatology for climate studies. J. Adv. Model. Earth Syst., 5, 704740, https://doi.org/10.1002/jame.20035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H., 1949: Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor., 6, 105122, https://doi.org/10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and A. V. Hou, 1988: Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 24162427, https://doi.org/10.1175/1520-0469(1988)045<2416:HCFZAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merlis, T. M., and T. Schneider, 2010: Atmospheric dynamics of Earth-like tidally locked aquaplanets. J. Adv. Model. Earth Syst., 2 (13), https://doi.org/10.3894/JAMES.2010.2.13.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2009: Nonlinear climate and hydrological responses to aerosol effects. J. Climate, 22, 13291339, https://doi.org/10.1175/2008JCLI2362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., and V. Ramaswamy, 2011: A model investigation of aerosol-induced changes in tropical circulation. J. Climate, 24, 51255133, https://doi.org/10.1175/2011JCLI4108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, Y., V. Ramaswamy, and G. Chen, 2011: A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Climate, 24, 60776091, https://doi.org/10.1175/2011JCLI4111.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J. L., and G. K. Vallis, 2010: The transition to superrotation in terrestrial atmospheres. J. Geophys. Res., 115, E12008, https://doi.org/10.1029/2010JE003587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

    • Crossref
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 21192124, https://doi.org/10.1126/science.1064034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramaswamy, V., and C.-T. Chen, 1997: Linear additivity of climate response for combined albedo and greenhouse perturbations. Geophys. Res. Lett., 24, 567570, https://doi.org/10.1029/97GL00248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, H. E., and Coauthors, 2015: Aerosol forcing of the position of the intertropical convergence zone since AD 1550. Nat. Geosci., 8, 195200, https://doi.org/10.1038/ngeo2353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, D. L., and A. Jones, 2004: Climate sensitivity to black carbon aerosol from fossil fuel combustion. J. Geophys. Res., 109, D16202, https://doi.org/10.1029/2004JD004676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Rotstayn, L. D., and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 21032116, https://doi.org/10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rotstayn, L. D., B. F. Ryan, and J. E. Penner, 2000: Precipitation changes in a GCM resulting from the indirect effects of anthropogenic aerosols. Geophys. Res. Lett., 27, 30453048, https://doi.org/10.1029/2000GL011737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1993: Equatorial superrotation and maintenance of the general circulation in two-level models. J. Atmos. Sci., 50, 12111227, https://doi.org/10.1175/1520-0469(1993)050<1211:ESAMOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., G. A. Schmidt, M. E. Mann, and G. Faluvegi, 2004: Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res., 109, D05104, https://doi.org/10.1029/2003JD004151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth system model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, https://doi.org/10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suarez, M. J., and D. G. Duffy, 1992: Terrestrial superrotation: A bifurcation of the general circulation. J. Atmos. Sci., 49, 15411554, https://doi.org/10.1175/1520-0469(1992)049<1541:TSABOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 770 pp.

    • Crossref
    • Export Citation
  • Vallis, G. K., P. Zurita-Gotor, C. Cairns, and J. Kidston, 2015: Response of the large-scale structure of the atmosphere to global warming. Quart. J. Roy. Meteor. Soc., 141, 14791501, https://doi.org/10.1002/qj.2456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and Coauthors, 2017: Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. J. Adv. Model. Earth Syst., 9, 870892, https://doi.org/10.1002/2016MS000902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2004: A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, D03106, https://doi.org/10.1029/2003JD004084.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2007: Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation. Geophys. Res. Lett., 34, L05709, https://doi.org/10.1029/2006GL028416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., 2015: Anthropogenic aerosols and the distribution of past large-scale precipitation change. Geophys. Res. Lett., 42, 10 87610 884, https://doi.org/10.1002/2015GL066416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, G. P., 2003: Barotropic instability and equatorial superrotation. J. Atmos. Sci., 60, 21362152, https://doi.org/10.1175/1520-0469(2003)060<2136:BIAES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., A. Jones, D. L. Roberts, C. A. Senior, and M. J. Woodage, 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn., 17, 845856, https://doi.org/10.1007/s003820100150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., and A. J. Broccoli, 2008: Equilibrium response of an atmosphere–mixed layer ocean model to different radiative forcing agents: Global and zonal mean response. J. Climate, 21, 43994423, https://doi.org/10.1175/2008JCLI2172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 21
PDF Downloads 34 34 18

The Effects of the Spatial Distribution of Direct Anthropogenic Aerosols Radiative Forcing on Atmospheric Circulation

View More View Less
  • 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York
  • 2 Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
© Get Permissions
Restricted access

Abstract

The large uncertainty in estimating the global aerosol radiative forcing (ARF) is one of the major challenges the climate community faces for climate projection. While the global-mean ARF may affect global quantities such as surface temperature, its spatial distribution may result in local thermodynamical and, thus, dynamical changes. Future changes in aerosol emissions distribution could further modulate the atmospheric circulation. Here, the effects of the spatial distribution of the direct anthropogenic ARF are studied using an idealized global circulation model, forced by a range of estimated-ARF amplitudes, based on the Copernicus Atmosphere Monitoring Service data. The spatial distribution of the estimated-ARF is globally decomposed, and the effects of the different modes on the circulation are studied. The most dominant spatial distribution feature is the cooling of the Northern Hemisphere in comparison to the Southern Hemisphere. This induces a negative meridional temperature gradient around the equator, which modulates the mean fields in the tropics. The ITCZ weakens and shifts southward, and the Northern (Southern) Hemisphere Hadley cell strengthens (weakens). The localization of the ARF in the Northern Hemisphere midlatitudes shifts the subtropical jet poleward and strengthens both the eddy-driven jet and Ferrel cell, because of the weakening of high-latitude eddy fluxes. Finally, the larger aerosol concentration in Asia compared to North America results in an equatorial superrotating jet. Understanding the effects of the different modes on the general circulation may help elucidate the circulation’s future response to the projected changes in ARF distribution.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rei Chemke, rc3101@columbia.edu

Abstract

The large uncertainty in estimating the global aerosol radiative forcing (ARF) is one of the major challenges the climate community faces for climate projection. While the global-mean ARF may affect global quantities such as surface temperature, its spatial distribution may result in local thermodynamical and, thus, dynamical changes. Future changes in aerosol emissions distribution could further modulate the atmospheric circulation. Here, the effects of the spatial distribution of the direct anthropogenic ARF are studied using an idealized global circulation model, forced by a range of estimated-ARF amplitudes, based on the Copernicus Atmosphere Monitoring Service data. The spatial distribution of the estimated-ARF is globally decomposed, and the effects of the different modes on the circulation are studied. The most dominant spatial distribution feature is the cooling of the Northern Hemisphere in comparison to the Southern Hemisphere. This induces a negative meridional temperature gradient around the equator, which modulates the mean fields in the tropics. The ITCZ weakens and shifts southward, and the Northern (Southern) Hemisphere Hadley cell strengthens (weakens). The localization of the ARF in the Northern Hemisphere midlatitudes shifts the subtropical jet poleward and strengthens both the eddy-driven jet and Ferrel cell, because of the weakening of high-latitude eddy fluxes. Finally, the larger aerosol concentration in Asia compared to North America results in an equatorial superrotating jet. Understanding the effects of the different modes on the general circulation may help elucidate the circulation’s future response to the projected changes in ARF distribution.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rei Chemke, rc3101@columbia.edu
Save