On the Simulations of Global Oceanic Latent Heat Flux in the CMIP5 Multimodel Ensemble

Rongwang Zhang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Rongwang Zhang in
Current site
Google Scholar
PubMed
Close
,
Xin Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, and Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Xin Wang in
Current site
Google Scholar
PubMed
Close
, and
Chunzai Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Chunzai Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Simulations of the global oceanic latent heat flux (LHF) in the CMIP5 multimodel ensemble (MME) were evaluated in comparison with 11 LHF products. The results show that the mean state of LHF in the MME coincides well with that in the observations, except for a slight overestimation in the tropical regions. The reproduction of the seasonal cycle of LHF in the MME is in good agreement with that in the observations. However, biases are relatively obvious in the coastal regions. A prominent upward trend in global-mean LHF is confirmed with all of the LHF products during the period of 1979–2005. Despite the consistent increase of LHF in CMIP5 models, the rates of increase are much weaker than those in the observations, with an average of approximately one-ninth that in the observations. The findings show that the rate of increase of near-surface specific humidity qa in MME is nearly 6 times that in the observations, while the rate of increase of the near-surface wind speed U is less than one-half that in the observations. The faster increase of qa and the slower increase of U could both suppress evaporation, and thus latent heat released by the ocean, which may be one of the reasons that the upward trend of LHF in the MME is nearly one order of magnitude lower than that in the observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Wang, wangxin@scsio.ac.cn

Abstract

Simulations of the global oceanic latent heat flux (LHF) in the CMIP5 multimodel ensemble (MME) were evaluated in comparison with 11 LHF products. The results show that the mean state of LHF in the MME coincides well with that in the observations, except for a slight overestimation in the tropical regions. The reproduction of the seasonal cycle of LHF in the MME is in good agreement with that in the observations. However, biases are relatively obvious in the coastal regions. A prominent upward trend in global-mean LHF is confirmed with all of the LHF products during the period of 1979–2005. Despite the consistent increase of LHF in CMIP5 models, the rates of increase are much weaker than those in the observations, with an average of approximately one-ninth that in the observations. The findings show that the rate of increase of near-surface specific humidity qa in MME is nearly 6 times that in the observations, while the rate of increase of the near-surface wind speed U is less than one-half that in the observations. The faster increase of qa and the slower increase of U could both suppress evaporation, and thus latent heat released by the ocean, which may be one of the reasons that the upward trend of LHF in the MME is nearly one order of magnitude lower than that in the observations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Wang, wangxin@scsio.ac.cn
Save
  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561576, https://doi.org/10.1007/s00376-012-2113-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., K. Katsaros, A. Mestas-Nuñez, W. Drennan, E. Ford, and H. Roquet, 2003: Satellite estimates of wind speed and latent heat flux over the global oceans. J. Climate, 16, 637656, https://doi.org/10.1175/1520-0442(2003)016<0637:SEOWSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., S. A. Grodsky, K. Katsaros, A. M. Mestas-Nuñez, B. Blanke, and F. Desbiolles, 2013: Improvement in air–sea flux estimates derived from satellite observations. Int. J. Remote Sens., 34, 52435261, https://doi.org/10.1080/01431161.2013.787502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., and Coauthors, 2017: Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ., 201, 196218, https://doi.org/10.1016/j.rse.2017.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, https://doi.org/10.1175/2008BAMS2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bourras, D., 2006: Comparison of five satellite-derived latent heat flux products to moored buoy data. J. Climate, 19, 62916313, https://doi.org/10.1175/JCLI3977.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., C. W. Fairall, X. Zeng, L. Eymard, and J. A. Curry, 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635, https://doi.org/10.1175/1520-0442(2003)016<0619:WBAAAL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Z. Wang, X. Zeng, M. Bosilovich, and C.-L. Shie, 2011: An assessment of the uncertainties in ocean surface turbulent fluxes in 11 reanalysis, satellite-derived, and combined global datasets. J. Climate, 24, 54695493, https://doi.org/10.1175/2011JCLI4223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, N., B. Ren, and J. Zheng, 2015: Evaluation of CMIP5 climate models in simulating 1979–2015 oceanic latent heat flux over the Pacific. Adv. Atmos. Sci., 32, 16031616, https://doi.org/10.1007/s00376-015-5016-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation. J. Climate, 5, 354369, https://doi.org/10.1175/1520-0442(1992)005<0354:LASHFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhuri, A. H., R. M. Ponte, G. Forget, and P. Heimbach, 2013: A comparison of atmospheric reanalysis surface products over the ocean and implications for uncertainties in air–sea boundary forcing. J. Climate, 26, 153170, https://doi.org/10.1175/JCLI-D-12-00090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., E. Nelkin, J. Ardizzone, R. M. Atlas, and C.-L. Shie, 2003: Surface turbulent heat and momentum fluxes over global oceans based on the Goddard satellite retrievals, version 2 (GSSTF2). J. Climate, 16, 32563273, https://doi.org/10.1175/1520-0442(2003)016<3256:STHAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, S.-H., E. Nelkin, J. Ardizzone, and R. M. Atlas, 2004: A comparison of latent heat fluxes over global oceans for four flux products. J. Climate, 17, 39733989, https://doi.org/10.1175/1520-0442(2004)017<3973:ACOLHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., J. Li, M. K. Dubey, M. Wang, and G. Lesins, 2011: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos. Chem. Phys., 11, 22 89322 907, https://doi.org/10.5194/acpd-11-22893-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collier, M. A., and Coauthors, 2011: The CSIRO-Mk3.6.0 atmosphere–ocean GCM: Participation in CMIP5 and data publication. 19th International Congress on Modelling and Simulation, Perth, Western Australia, Australia, Modelling and Simulation Society of Australia and New Zealand, 2691–2697.

  • Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev., 4, 10511075, https://doi.org/10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409424, https://doi.org/10.1175/BAMS-85-3-409.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth system model: From CMIP3 to CMIP5. Climate Dyn., 40, 21232165, https://doi.org/10.1007/s00382-012-1636-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P., and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., S. Bony, G. A. Meehl, C. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for Tropical Ocean–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fennig, K., A. Andersson, S. Bakan, C. Klepp, and M. Schroeder, 2012: Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS 3.2—Monthly means/6-hourly composites. EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF), accessed January 2018, doi:10.5676/EUM_SAF_CM/HOAPS/V001.

    • Crossref
    • Export Citation
  • Franklin, C. N., Z. Sun, D. Bi, M. Dix, H. Yan, and A. Bodas-Salcedo, 2013: Evaluation of clouds in ACCESS using the satellite simulator package COSP: Regime-sorted tropical cloud properties. J. Geophys. Res., 118, 66636679, https://doi.org/10.1002/jgrd.50496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991, https://doi.org/10.1175/2011JCLI4083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: Southern Hemisphere cloud-dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, https://doi.org/10.1175/JCLI-D-14-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grodsky, S. A., A. Bentamy, J. A. Carton, and R. T. Pinker, 2009: Intraseasonal latent heat flux based on satellite observations. J. Climate, 22, 45394556, https://doi.org/10.1175/2009JCLI2901.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ji, D., and Coauthors, 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 20392064, https://doi.org/10.5194/gmd-7-2039-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2010: Climate and carbon-cycle variability over the last millennium. Climate Past, 6, 723737, https://doi.org/10.5194/cp-6-723-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S. Y., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kubota, M., A. Kano, H. Muramatsu, and H. Tomita, 2003: Intercomparison of various surface latent heat flux fields. J. Climate, 16, 670678, https://doi.org/10.1175/1520-0442(2003)016<0670:IOVSLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laîné, A., H. Nakamura, K. Nishii, and T. Miyasaka, 2014: A diagnostic study of future evaporation changes projected in CMIP5 climate models. Climate Dyn., 42, 27452761, https://doi.org/10.1007/s00382-014-2087-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lauer, A., and K. Hamilton, 2013: Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data. J. Climate, 26, 38233845, https://doi.org/10.1175/JCLI-D-12-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levang, S. J., and R. W. Schmitt, 2015: Centennial changes of the global water cycle in CMIP5 models. J. Climate, 28, 64896502, https://doi.org/10.1175/JCLI-D-15-0143.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Coauthors, 2013: The Flexible Global Ocean–Atmosphere–Land System Model, grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543560, https://doi.org/10.1007/s00376-012-2140-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and L. Yu, 2016: Variations of the global net air–sea heat flux during the “hiatus” period (2001–10). J. Climate, 29, 36473660, https://doi.org/10.1175/JCLI-D-15-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, C. A. Clayson, and M. A. Bourassa, 2011: High-resolution satellite surface latent heat fluxes in North Atlantic hurricanes. Mon. Wea. Rev., 139, 27352747, https://doi.org/10.1175/2011MWR3548.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., 1986: Statistical relation between monthly mean precipitable water and surface-level humidity over global oceans. Mon. Wea. Rev., 114, 15911601, https://doi.org/10.1175/1520-0493(1986)114<1591:SRBMMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, J., G. R. Foltz, B. J. Soden, G. Huang, J. He, and C. Dong, 2016: Will surface winds weaken in response to global warming? Environ. Res. Lett., 11, 124012, https://doi.org/10.1088/1748-9326/11/12/124012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., T. A. Erwin, and J. M. Bathols, 2011: Global climate model projected changes in 10 m wind speed and direction due to anthropogenic cliamte change. Atmos. Sci. Lett., 12, 325333, https://doi.org/10.1002/asl.341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., G. J. Boer, C. Covey, M. Latif, and S. Ronald, 2000: The Coupled Model Intercomparison Project (CMIP). Bull. Amer. Meteor. Soc., 81, 313318, https://doi.org/10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mochizuki, T., and Coauthors, 2012: Decadal prediction using a recent series of MIROC global climate models. J. Meteor. Soc. Japan, 90A, 373383, https://doi.org/10.2151/jmsj.2012-A22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, and M. J. McPhaden, 2012: TropFlux: Air–sea fluxes for the global tropical oceans—Description and evaluation. Climate Dyn., 38, 15211543, https://doi.org/10.1007/s00382-011-1115-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reichler, T., and J. Kim, 2008: How well do coupled models simulate today’s climate? Bull. Amer. Meteor. Soc., 89, 303312, https://doi.org/10.1175/BAMS-89-3-303.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric simulation using GISS ModelE: Comparison to in situ, satellite, and reanalysis data. J. Climate, 19, 153192, https://doi.org/10.1175/JCLI3612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schulz, J., J. Meywerk, S. Ewald, and P. Schlüssel, 1997: Evaluation of satellite-derived latent heat fluxes. J. Climate, 10, 27822795, https://doi.org/10.1175/1520-0442(1997)010<2782:EOSDLH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shie, C.-L., K. Hilburn, L. S. Chiu, R. Adler, I.-I. Lin, E. Nelkin, J. Ardizzone, and S. Gao, 2012: Goddard satellite-based surface turbulent fluxes, 0.25 × 0.25 deg, monthly grid V3. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed January 2018, 10.5067/MEASURES/GSSTF/DATA307.

  • Singh, R., P. C. Joshi, and C. M. Kishtawal, 2005: A new technique for estimation of surface latent heat fluxes using satellite-based observations. Mon. Wea. Rev., 133, 26922710, https://doi.org/10.1175/MWR2993.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skliris, N., J. D. Zika, G. Nurser, S. A. Josey, and R. Marsh, 2016: Global water cycle amplifying at less than the Clausius–Clapeyron rate. Sci. Rep., 6, 38752, https://doi.org/10.1038/srep38752.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. R., P. J. Hughes, and M. A. Bourassa, 2011: A comparison of nine monthly air–sea flux products. Int. J. Climatol., 31, 10021027, https://doi.org/10.1002/joc.2225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2008: The role of surface fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657, https://doi.org/10.1038/ngeo312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swinbank, W. C., 1951: The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteor., 8, 135145, https://doi.org/10.1175/1520-0469(1951)008<0135:TMOVTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanimoto, Y., H. Nakamura, T. Kagimoto, and S. Yamane, 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108, 3304, https://doi.org/10.1029/2002JC001750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., Ed., 2000: Intercomparison and validation of ocean atmosphere energy flux fields. Final Rep. of the Joint WCRP/SCOR Working Group on Air–Sea Fluxes WCRP-112, WMO/TD-1036, 306 pp.

  • Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze, 2013: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev., 6, 301325, https://doi.org/10.5194/gmd-6-301-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, H., M. Kubota, M. F. Cronin, S. Iwasaki, M. Konda, and H. Ichikawa, 2010: An assessment of surface heat fluxes from J-OFURO2 at the KEO and JKEO sites. J. Geophys. Res. Oceans, 115, C03018, https://doi.org/10.1029/2009JC005545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, https://doi.org/10.1175/2008BAMS2634.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate mode: Description and basic evaluation. Climate Dyn., 40, 20912121, https://doi.org/10.1007/s00382-011-1259-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulation. Izv. Atmos. Ocean. Phys., 46, 414431, https://doi.org/10.1134/S000143381004002X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, D., L. Zeng, X. Li, and P. Shi, 2013: Validation of satellite-derived daily latent heat flux over the South China Sea, compared with observations and five products. J. Atmos. Oceanic Technol., 30, 18201832, https://doi.org/10.1175/JTECH-D-12-00153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., R. Zhang, J. Huang, L. Zeng, and F. Huang, 2017: Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res. Oceans, 122, 50885104, https://doi.org/10.1002/2016JC012332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, S., and Coauthors, 2011: MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev., 4, 845872, https://doi.org/10.5194/gmd-4-845-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Worley, S. J., S. D. Woodruff, R. W. Reynolds, S. J. Lubker, and N. Lott, 2005: ICOADS release 2.1 data and products. Int. J. Climatol., 25, 823842, https://doi.org/10.1002/joc.1166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123147, https://doi.org/10.1007/s00382-008-0487-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., S. Zieger, and A. Babanin, 2011: Global trends in wind speed and wave height. Science, 332, 451455, https://doi.org/10.1126/science.1197219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20, 53765390, https://doi.org/10.1175/2007JCLI1714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yukimoto, and Coauthors, 2012: A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteor. Soc. Japan, 90A, 2364, https://doi.org/10.2151/jmsj.2012-A02.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L.-T., G. Chen, and R. Wu, 2015: Change in surface latent heat flux and its association with tropical cyclone genesis in the western North Pacific. Theor. Appl. Climatol., 119, 221227, https://doi.org/10.1007/s00704-014-1096-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., L. Zou, B. Wu, C. Jin, F. Song, X. Chen, and L. Zhang, 2014: Development of Earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. J. Meteor. Res., 28, 762779, https://doi.org/10.1007/s13351-014-4501-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1812 199 24
PDF Downloads 1463 134 7