• Arlot, S., and A. Celisse, 2010: A survey of cross-validation procedures for model selection. Stat. Surv., 4, 4079, https://doi.org/10.1214/09-SS054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arthun, M., T. Eldevik, E. Viste, H. Drange, T. Furevik, H. L. Johnson, and N. S. Keenlyside, 2017: Skillful prediction of northern climate provided by the ocean. Nat. Commun., 8, 15875, https://doi.org/10.1038/ncomms15875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2010: Two limits of initial-value decadal predictability in a CGCM. J. Climate, 23, 62926311, https://doi.org/10.1175/2010JCLI3678.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brune, S., A. Düsterhus, H. Pohlmann, W. A. Müller, and J. Baehr, 2017: Time dependency of the prediction skill for the North Atlantic subpolar gyre in initialized decadal hindcasts. Climate Dyn., https://doi.org/10.1007/s00382-017-3991-4, in press.

    • Search Google Scholar
    • Export Citation
  • Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Radel, and B. Stevens, 2015: The Atlantic Multidecadal Oscillation without a role for ocean circulation. Science, 350, 320324, https://doi.org/10.1126/science.aab3980.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collow, T. W., W. Wang, A. Kumar, and J. Zhang, 2015: Improving Arctic sea ice prediction using PIOMAS initial sea ice thickness in a coupled ocean–atmosphere model. Mon. Wea. Rev., 143, 46184630, https://doi.org/10.1175/MWR-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doblas-Reyes, F. J., and Coauthors, 2013: Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715, https://doi.org/10.1038/ncomms2704.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, S., S. L. Hautala, and K. A. Kelly, 2007: Interannual variations in upper-ocean heat content and heat transport convergence in the western North Atlantic. J. Phys. Oceanogr., 37, 26822697, https://doi.org/10.1175/2007JPO3645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2015: Heat content variability in the North Atlantic Ocean in ocean reanalyses. Geophys. Res. Lett., 42, 29012909, https://doi.org/10.1002/2015GL063299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411, https://doi.org/10.1029/2000RG000084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jolliffe, I. T., and D. B. Stephenson, 2012: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. Vol. 2. 2nd ed. Wiley and Sons, 292 pp.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., and Coauthors, 2013: Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst., 5, 422446, https://doi.org/10.1002/jame.20023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keenlyside, N. S., M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner, 2008: Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453, 8488, https://doi.org/10.1038/nature06921.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klöwer, M., M. Latif, H. Ding, R. Greatbatch, and W. Park, 2014: Atlantic meridional overturning circulation and the prediction of North Atlantic sea surface temperature. Earth Planet. Sci. Lett., 406, 16, https://doi.org/10.1016/j.epsl.2014.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., and Coauthors, 2017: Overturning in the subpolar North Atlantic Program: A new international ocean observing system. Bull. Amer. Meteor. Soc., 98, 737752, https://doi.org/10.1175/BAMS-D-16-0057.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matei, D., H. Pohlmann, J. Jungclaus, W. Müller, H. Haak, and J. Marotzke, 2012: Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523, https://doi.org/10.1175/JCLI-D-11-00633.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2012: Forecast skill of multi-year seasonal means in the decadal prediction system of the Max Planck Institute for Meteorology. Geophys. Res. Lett., 39, L22707, https://doi.org/10.1029/2012GL053326.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., H. Pohlmann, F. Sienz, and D. Smith, 2014: Decadal climate predictions for the period 1901-2010 with a coupled climate model. Geophys. Res. Lett., 41, 21002107, https://doi.org/10.1002/2014GL059259.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Müller, W. A., and Coauthors, 2015: A twentieth-century reanalysis forced ocean model to reconstruct the North Atlantic climate variation during the 1920s. Climate Dyn., 44, 19351955, https://doi.org/10.1007/s00382-014-2267-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., and Coauthors, 2004: Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853872, https://doi.org/10.1175/BAMS-85-6-853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohlmann, H., J. Kröger, R. J. Greatbatch, and W. A. Müller, 2017: Initialization shock in decadal hindcasts due to errors in wind stress over the tropical Pacific. Climate Dyn., 49, 26852693, https://doi.org/10.1007/s00382-016-3486-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N., D. Parker, E. Horton, C. Folland, L. Alexander, D. Rowell, E. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, and D. Smith, 2012: Initialized decadal predictions of the rapid warming of the North Atlantic Ocean in the mid 1990s. Geophys. Res. Lett., 39, L19713, https://doi.org/10.1029/2012GL053370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, and D. Smith, 2013: Predictable climate impacts of the decadal changes in the ocean in the 1990s. J. Climate, 26, 63296339, https://doi.org/10.1175/JCLI-D-12-00827.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, and D. Smith, 2014: Decadal predictions of the cooling and freshening of the North Atlantic in the 1960s and the role of ocean circulation. Climate Dyn., 42, 23532365, https://doi.org/10.1007/s00382-014-2115-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robson, J., I. Polo, D. L. Hodson, D. P. Stevens, and L. C. Shaffrey, 2018: Decadal prediction of the North Atlantic subpolar gyre in the HiGEM high-resolution climate model. Climate Dyn., 50, 921937, https://doi.org/%2010.1007/s00382-017-3649-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gomez, E., C. Cassou, Y. Ruprich-Robert, E. Fernandez, and L. Terray, 2016: Drift dynamics in a coupled model initialized for decadal forecasts. Climate Dyn., 46, 18191840, https://doi.org/10.1007/s00382-015-2678-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheen, K., D. Smith, N. Dunstone, R. Eade, D. Rowell, and M. Vellinga, 2017: Skilful prediction of Sahel summer rainfall on inter-annual and multi-year time scales. Nat. Commun., 8, 14966, https://doi.org/10.1038/ncomms14966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., S. Cusack, A. W. Colman, C. K. Folland, G. R. Harris, and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799, https://doi.org/10.1126/science.1139540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 33253338, https://doi.org/10.1007/s00382-013-1683-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2013: Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst., 5, 146172, https://doi.org/10.1002/jame.20015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Hurrell, L. Polvani, and H. Cullen, 2001: The North Atlantic Oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA, 98, 12 87612 877, https://doi.org/10.1073/pnas.231391598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content. J. Climate, 25, 51735189, https://doi.org/10.1175/JCLI-D-11-00595.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J., and R. Zhang, 2015: On the evolution of Atlantic Meridional Overturning Circulation fingerprint and implications for decadal predictability in the North Atlantic. Geophys. Res. Lett., 42, 54195426, https://doi.org/10.1002/2015GL064596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2008: Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys. Res. Lett., 35, L20705, https://doi.org/10.1029/2008GL035463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2010: Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys. Res. Lett., 37, L16703, https://doi.org/10.1029/2010GL044474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., 2017: On the persistence and coherence of subpolar sea surface temperature and salinity anomalies associated with the Atlantic multidecadal variability. Geophys. Res. Lett., 44, 78657875, https://doi.org/10.1002/2017GL074342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., R. Sutton, G. Danabasoglu, T. L. Delworth, W. M. Kim, J. Robson, and S. G. Yeager, 2016: Comment on “The Atlantic Multidecadal Oscillation without a role for ocean circulation.” Science, 352, 1527–1527, https://doi.org/10.1126/science.aaf1660.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 87 87 43
PDF Downloads 49 49 28

Atlantic Ocean Heat Transport Influences Interannual-to-Decadal Surface Temperature Predictability in the North Atlantic Region

View More View Less
  • 1 Institute for Oceanography, CEN, Universität Hamburg, and International Max Planck Research School on Earth System Modelling, Max Planck Institute for Meteorology, Hamburg, Germany
  • 2 Deutscher Wetterdienst, and Max Planck Institute for Meteorology, Hamburg, Germany
  • 3 Institute for Oceanography, CEN, Universität Hamburg, Hamburg, Germany
© Get Permissions
Restricted access

Abstract

An analysis of a three-member ensemble of initialized coupled simulations with the MPI-ESM-LR covering the period 1901–2010 shows that Atlantic northward ocean heat transport (OHT) at 50°N influences surface temperature variability in the North Atlantic region for several years. Three to ten years after strong OHT phases at 50°N, a characteristic pattern of sea surface temperature (SST) anomalies emerges: warm anomalies are found in the North Atlantic and cold anomalies emerge in the Gulf Stream region. This pattern originates from persistent upper-ocean heat content anomalies that originate from southward-propagating OHT anomalies in the North Atlantic. Interannual-to-decadal SST predictability of yearly initialized hindcasts is linked to this SST pattern: when ocean heat transport at 50°N is strong at the initialization of a hindcast, SST anomaly correlation coefficients in the northeast Atlantic at lead years 2–9 are significantly higher than when the ocean heat transport at 50°N is weak at initialization. Surface heat fluxes that mask the predictable low-frequency oceanic variability that influences SSTs in the northwest Atlantic after strong OHT phases, and in the northwest and northeast Atlantic after weak OHT phases at 50°N lead to zonally asymmetrically predictable SSTs 7–9 years ahead. This study shows that the interannual-to-decadal predictability of North Atlantic SSTs depends strongly on the strength of subpolar ocean heat transport at the start of a prediction, indicating that physical mechanisms need to be taken into account for actual temperature predictions.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leonard F. Borchert, leonard.borchert@mpimet.mpg.de

Abstract

An analysis of a three-member ensemble of initialized coupled simulations with the MPI-ESM-LR covering the period 1901–2010 shows that Atlantic northward ocean heat transport (OHT) at 50°N influences surface temperature variability in the North Atlantic region for several years. Three to ten years after strong OHT phases at 50°N, a characteristic pattern of sea surface temperature (SST) anomalies emerges: warm anomalies are found in the North Atlantic and cold anomalies emerge in the Gulf Stream region. This pattern originates from persistent upper-ocean heat content anomalies that originate from southward-propagating OHT anomalies in the North Atlantic. Interannual-to-decadal SST predictability of yearly initialized hindcasts is linked to this SST pattern: when ocean heat transport at 50°N is strong at the initialization of a hindcast, SST anomaly correlation coefficients in the northeast Atlantic at lead years 2–9 are significantly higher than when the ocean heat transport at 50°N is weak at initialization. Surface heat fluxes that mask the predictable low-frequency oceanic variability that influences SSTs in the northwest Atlantic after strong OHT phases, and in the northwest and northeast Atlantic after weak OHT phases at 50°N lead to zonally asymmetrically predictable SSTs 7–9 years ahead. This study shows that the interannual-to-decadal predictability of North Atlantic SSTs depends strongly on the strength of subpolar ocean heat transport at the start of a prediction, indicating that physical mechanisms need to be taken into account for actual temperature predictions.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Leonard F. Borchert, leonard.borchert@mpimet.mpg.de
Save