Potential Underestimation of Future Mei-Yu Rainfall with Coarse-Resolution Climate Models

Xiaolong Chen LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaolong Chen in
Current site
Google Scholar
PubMed
Close
,
Peili Wu Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Peili Wu in
Current site
Google Scholar
PubMed
Close
,
Malcolm J. Roberts Met Office Hadley Centre, Exeter, United Kingdom

Search for other papers by Malcolm J. Roberts in
Current site
Google Scholar
PubMed
Close
, and
Tianjun Zhou LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The amount of rainfall during June and July along the mei-yu front contributes about 45% to the total summer precipitation over the Yangtze River valley. How it will change under global warming is of great concern to the people of China because of its particular socioeconomic importance, but climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) show large uncertainties. This paper examines model resolution sensitivity and reports large differences in projected future summer rainfall along the mei-yu front between a low-resolution (Gaussian N96 grid, ~1.5° latitude–longitude) and a high-resolution (N216, ~0.7°) version of the Hadley Centre’s latest climate model, the HadGEM3 Global Coupled Configuration 2.0 (HadGEM3-GC2). The high-resolution model projects large increases of summer rainfall under two representative concentration pathway scenarios (RCP8.5 and RCP4.5) whereas the low-resolution model shows a decrease. A larger increase of projected mei-yu rainfall in higher-resolution models is also observed across the CMIP5 ensemble. These differences can be explained in terms of enhanced moist static energy advection and moisture convergence by stationary eddies in the high-resolution model. A large-scale manifestation of the anomalous stationary eddies is the contrasting response to the same warming scenario by the western North Pacific subtropical high, which is almost unchanged in N216 but retreats evidently eastward in N96, reducing the southwesterly flow and consequently moisture supply to the mei-yu front. Further increases in model resolution to resolve parameterized processes and detailed orographic features will hopefully reduce the spread in future climate projections.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Abstract

The amount of rainfall during June and July along the mei-yu front contributes about 45% to the total summer precipitation over the Yangtze River valley. How it will change under global warming is of great concern to the people of China because of its particular socioeconomic importance, but climate model projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) show large uncertainties. This paper examines model resolution sensitivity and reports large differences in projected future summer rainfall along the mei-yu front between a low-resolution (Gaussian N96 grid, ~1.5° latitude–longitude) and a high-resolution (N216, ~0.7°) version of the Hadley Centre’s latest climate model, the HadGEM3 Global Coupled Configuration 2.0 (HadGEM3-GC2). The high-resolution model projects large increases of summer rainfall under two representative concentration pathway scenarios (RCP8.5 and RCP4.5) whereas the low-resolution model shows a decrease. A larger increase of projected mei-yu rainfall in higher-resolution models is also observed across the CMIP5 ensemble. These differences can be explained in terms of enhanced moist static energy advection and moisture convergence by stationary eddies in the high-resolution model. A large-scale manifestation of the anomalous stationary eddies is the contrasting response to the same warming scenario by the western North Pacific subtropical high, which is almost unchanged in N216 but retreats evidently eastward in N96, reducing the southwesterly flow and consequently moisture supply to the mei-yu front. Further increases in model resolution to resolve parameterized processes and detailed orographic features will hopefully reduce the spread in future climate projections.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn
Save
  • Chen, H., and J. Sun, 2009: How the “best” models project the future precipitation change in China. Adv. Atmos. Sci., 26, 773782, https://doi.org/10.1007/s00376-009-8211-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H., and J. Sun, 2013: Projected change in East Asian summer monsoon precipitation under RCP scenario. Meteor. Atmos. Phys., 121, 5577, https://doi.org/10.1007/s00703-013-0257-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014: Intermodel spread of East Asian summer monsoon simulations in CMIP5. Geophys. Res. Lett., 41, 13141321, https://doi.org/10.1002/2013GL058981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and T. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific–Japan pattern interannual variability. J. Geophys. Res. Atmos., 119, 13 04313 066, https://doi.org/10.1002/2014JD022064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., and T. Zhou, 2015: Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett., 42, 94339439, https://doi.org/10.1002/2015GL066384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and J. D. Neelin, 2003: Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Climate, 16, 406425, https://doi.org/10.1175/1520-0442(2003)016<0406:MLTNEO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C.-W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, https://doi.org/10.1175/JCLI-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., J. Liu, Y. Sun, Y. Liu, J. He, and Y. Song, 2007: A study of the synoptic-climatology of the meiyu system in East Asia (in Chinese). Chin. J. Atmos. Sci., 31, 10821101.

    • Search Google Scholar
    • Export Citation
  • Endo, H., and A. Kitoh, 2014: Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys. Res. Lett., 41, 17041711, https://doi.org/10.1002/2013GL059158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Y., and Coauthors, 2017a: High-resolution simulation of the boreal summer intraseasonal oscillation in Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 143, 362373, https://doi.org/10.1002/qj.2927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fang, Y., P. Wu, M. S. Mizielinski, M. J. Roberts, B. Li, X. Xin, and X. Liu, 2017b: Monsoon intra-seasonal variability in a high-resolution version of Met Office Global Coupled Model. Tellus, 69A, 1354661, https://doi.org/10.1080/16000870.2017.1354661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, L., and T. Zhou, 2015: Simulation of summer precipitation and associated water vapor transport over the Tibetan Plateau by Meteorological Research Institute model (in Chinese). Chin. J. Atmos. Sci., 39, 385396.

    • Search Google Scholar
    • Export Citation
  • Feng, L., T. Zhou, B. Wu, T. Li, and J.-J. Luo, 2011: Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv. Atmos. Sci., 28, 464476, https://doi.org/10.1007/s00376-010-0016-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J., and Coauthors, 2016: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harada, Y., and Coauthors, 2016: The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability. J. Meteor. Soc. Japan, 94, 269302, https://doi.org/10.2151/jmsj.2016-015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., T. Zhou, A. Lin, B. Wu, D. Gu, C. Li, and B. Zheng, 2015: Enhanced or weakened western North Pacific subtropical high under global warming? Sci. Rep., 5, 16771, https://doi.org/10.1038/srep16771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., B. Wu, L. Zou, and T. Zhou, 2017: Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30, 64656479, https://doi.org/10.1175/JCLI-D-16-0529.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, C., A. Lin, D. Gu, C. Li, B. Zheng, B. Wu, and T. Zhou, 2018: Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate. Theor. Appl. Climatol., 131, 681691, https://doi.org/10.1007/s00704-016-2001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, D., and Z. Tian, 2013: East Asian monsoon change for the 21st century: Results of CMIP3 and CMIP5 models. Chin. Sci. Bull., 58, 14271435, https://doi.org/10.1007/s11434-012-5533-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., 2017: The Asian monsoon and its future change in climate models: A review. J. Meteor. Soc. Japan, 95, 733, https://doi.org/10.2151/jmsj.2017-002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and S. Kusunoki, 2008: East Asian summer monsoon simulation by a 20-km mesh AGCM. Climate Dyn., 31, 389401, https://doi.org/10.1007/s00382-007-0285-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and H. Endo, 2016: Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Wea. Climate Extremes, 11, 4152, https://doi.org/10.1016/j.wace.2015.09.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., H. Endo, K. Krishna Kumar, I. F. A. Cavalcanti, P. Goswami, and T. Zhou, 2013: Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res. Atmos., 118, 30533065, https://doi.org/10.1002/jgrd.50258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 50855108, https://doi.org/10.1175/2010JCLI3413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and O. Arakawa, 2012: Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Climate Dyn., 38, 20552072, https://doi.org/10.1007/s00382-011-1234-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 56015621, https://doi.org/10.1175/JCLI-D-14-00585.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, 2006: Change of baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteor. Soc. Japan, 84, 581611, https://doi.org/10.2151/jmsj.84.581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kusunoki, S., R. Mizuta, and M. Matsueda, 2011: Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size. Climate Dyn., 37, 24812493, https://doi.org/10.1007/s00382-011-1000-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, P., T. Zhou, L. Zou, X. Chen, W. Zhang, and Z. Guo, 2017: Simulation of climatology and interannual variability of spring persistent rains by MRI model: Comparison of different horizontal resolutions (in Chinese). Chin. J. Atmos. Sci., 41, 515532.

    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 41074125, https://doi.org/10.1175/JCLI-D-14-00559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., and W.-C. Wang, 1998: Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc., 124, 25972623, https://doi.org/10.1002/qj.49712455204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., W.-C. Wang, and A. N. Samel, 2001: Biases in AMIP model simulations of the east China monsoon system. Climate Dyn., 17, 291304, https://doi.org/10.1007/s003820000136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., K. E. Kunkel, G. A. Meehl, R. G. Jones, and J. X. L. Wang, 2008: Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys. Res. Lett., 35, L08709, https://doi.org/10.1029/2007GL032849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, S., W. Gao, and X.-Z. Liang, 2013: A regional climate model downscaling projection of China future climate change. Climate Dyn., 41, 18711884, https://doi.org/10.1007/s00382-012-1632-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and I. M. Held, 2016: The response of an idealized atmosphere to orographic forcing: Zonal versus meridional propagation. J. Atmos. Sci., 73, 37013718, https://doi.org/10.1175/JAS-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, H.-J., and J.-G. Jhun, 2010: The change in the East Asian summer monsoon simulated by the MIROC3.2 high-resolution coupled model under global warming scenarios. Asia-Pac. J. Atmos. Sci., 46, 7388, https://doi.org/10.1007/s13143-010-0008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niu, X., and Coauthors, 2015: Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario. J. Geophys. Res. Atmos., 120, 99659980, https://doi.org/10.1002/2015JD023853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ose, T., 2017: Future precipitation changes during summer in East Asia and model dependence in high-resolution MRI-AGCM experiments. Hydrol. Res. Lett., 11, 168174, https://doi.org/10.3178/hrl.11.168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., H. T. Hewitt, P. Hyder, D. Ferreira, S. A. Josey, M. Mizielinski, and A. Shelly, 2016: Impact of ocean resolution on coupled air–sea fluxes and large-scale climate. Geophys. Res. Lett., 43, 10 43010 438, https://doi.org/10.1002/2016GL070559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, M. J., and Coauthors, 2018: The benefits of high resolution for climate simulation: Process understanding and the enabling of stakeholder decisions at the regional scale. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-15-00320.1, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2016: Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2. J. Adv. Model. Earth Syst., 8, 813830, https://doi.org/10.1002/2015MS000614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and J. Ok, 2013: Assessing future changes in the East Asian summer monsoon using CMIP3 models: Results from the best model ensemble. J. Climate, 26, 18071817, https://doi.org/10.1175/JCLI-D-12-00109.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675, https://doi.org/10.1175/JCLI-D-12-00694.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y., X.-J. Gao, Y.-G. Wang, and F. Giorgi, 2009: Simulation and projection of monsoon rainfall and rain patterns over eastern China under global warming by RegCM3. Atmos. Oceanic Sci. Lett., 2, 308313, https://doi.org/10.1080/16742834.2009.11446816.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014a: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulation? J. Climate, 27, 87618777, https://doi.org/10.1175/JCLI-D-14-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., and T. Zhou, 2014b: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 16791697, https://doi.org/10.1175/JCLI-D-13-00248.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41, 27112744, https://doi.org/10.1007/s00382-012-1607-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Y. Ding, 2010: A projection of future changes in summer precipitation and monsoon in East Asia. Sci. China Earth Sci., 53, 284300, https://doi.org/10.1007/s11430-009-0123-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and Coauthors, 2015: The Met Office Global Coupled Model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 15091524, https://doi.org/10.5194/gmd-8-1509-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017a: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30, 96219635, https://doi.org/10.1175/JCLI-D-16-0489.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2017b: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 96379650, https://doi.org/10.1175/JCLI-D-16-0495.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., N. Christidis, and P. Stott, 2013: Anthropogenic impact on Earth’s hydrological cycle. Nat. Climate Change, 3, 807810, https://doi.org/10.1038/nclimate1932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P., J. Ridley, A. Pardaens, R. Levine, and J. Lowe, 2015: The reversibility of CO2 induced climate change. Climate Dyn., 45, 745754, https://doi.org/10.1007/s00382-014-2302-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., E. J. Zipser, and C. Liu, 2009: Rainfall characteristics and convective properties of mei-yu precipitation systems over south China, Taiwan, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137, 42614275, https://doi.org/10.1175/2009MWR2982.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, J., T. Zhou, Z. Guo, X. Chen, L. Zou, and Y. Sun, 2017: Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate, 30, 88258840, https://doi.org/10.1175/JCLI-D-16-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., P. Wu, T. Zhou, M. J. Roberts, and R. Schiemann, 2016: Added value of high resolution models in simulating global precipitation characteristics. Atmos. Sci. Lett., 17, 646657, https://doi.org/10.1002/asl.715.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., D. Gong, J. Li, and B. Li, 2009a: Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—Recent progress and state of affairs. Meteor. Z., 18, 455467, https://doi.org/10.1127/0941-2948/2009/0396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., B. Wu, and B. Wang, 2009b: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 11591173, https://doi.org/10.1175/2008JCLI2245.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, L., and T. Zhou, 2016a: A regional ocean–atmosphere coupled model developed for CORDEX East Asia: Assessment of Asian summer monsoon simulation. Climate Dyn., 47, 36273640, https://doi.org/10.1007/s00382-016-3032-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zou, L., and T. Zhou, 2016b: Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM. J. Geophys. Res. Atmos., 121, 26912704, https://doi.org/10.1002/2015JD024519.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 532 233 10
PDF Downloads 339 102 3