• Abhik, S., M. Halder, P. Mukhopadhyay, X. Jiang, and B. N. Goswami, 2013: A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Climate Dyn., 40, 16111624, https://doi.org/10.1007/s00382-012-1425-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bentamy, A., P. Queffeulou, Y. Quilfen, and K. Katsaros, 1999: Ocean surface wind fields estimated from satellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens., 37, 24692486, https://doi.org/10.1109/36.789643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., and L. M. V. Carvalho, 2009: IPCC global coupled model simulations of the South America monsoon system. Climate Dyn., 33, 893916, https://doi.org/10.1007/s00382-008-0488-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bombardi, R. J., E. K. Schneider, L. Marx, S. Halder, B. Singh, A. B. Tawfik, P. A. Dirmeyer, and J. L. Kinter III, 2015: Improvements in the representation of the Indian summer monsoon in the NCEP climate forecast system version 2. Climate Dyn., 45, 24852498, https://doi.org/10.1007/s00382-015-2484-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448, https://doi.org/10.1175/2008JCLI2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chaudhari, H. S., M. A. Shinde, and J. H. Oh, 2010: Understanding of anomalous Indian summer monsoon rainfall of 2002 and 1994. Quat. Int., 213, 2032, https://doi.org/10.1016/j.quaint.2008.05.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, C. E., and G. J. Zhang, 2004: Impact of absorbing aerosol on precipitation: Dynamic aspects in association with convective available potential energy and convective parameterization closure and dependence on aerosol heating profile. J. Geophys. Res., 109, D22103, https://doi.org/10.1029/2004JD004726.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and B. G. Cohen, 2006: Fluctuations in an equilibrium convective ensemble. Part I: Theoretical formulation. J. Atmos. Sci., 63, 19962004, https://doi.org/10.1175/JAS3709.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770, https://doi.org/10.1175/JCLI-D-11-00384.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, J. L. Kinter III, and M. Khairoutdinov, 2011: The Asian monsoon in the superparameterized CCSM and its relationship to tropical wave activity. J. Climate, 24, 51345156, https://doi.org/10.1175/2011JCLI4202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deng, Q., B. Khouider, and A. J. Majda, 2015: The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. J. Atmos. Sci., 72, 5574, https://doi.org/10.1175/JAS-D-14-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, https://doi.org/10.1007/s00162-012-0281-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, H. J. J. Jonker, and C. Jakob, 2015: Stochastic parameterization of convective area fractions with a multicloud model inferred from observational data. J. Atmos. Sci., 72, 854869, https://doi.org/10.1175/JAS-D-14-0110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fasullo, J., and P. J. Webster, 2002: Hydrological signatures relating the Asian summer monsoon and ENSO. J. Climate, 15, 30823095, https://doi.org/10.1175/1520-0442(2002)015<3082:HSRTAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, and L. Tao, 2006: Satellite data reveal the 3-D moisture structure of tropical intraseasonal oscillation and its coupling with underlying ocean. Geophys. Res. Lett., 33, L03705, https://doi.org/10.1029/2005GL025074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., L. R. Leung, C. Zhao, and S. Hagos, 2017: Sensitivity of U.S. summer precipitation to model resolution and convective parameterizations across gray zone resolutions. J. Geophys. Res. Atmos., 122, 27142733, https://doi.org/10.1002/2016JD025896.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A., H. Morrison, and S. J. Ghan, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part II: Single-column and global results. J. Climate, 21, 36603679, https://doi.org/10.1175/2008JCLI2116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., P. Mukhopadhyay, M. Khairoutdinov, and B. N. Goswami, 2013: Simulation of Indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: Need to improve the embedded cloud resolving model. Climate Dyn., 41, 14971507, https://doi.org/10.1007/s00382-012-1563-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., M. Deshpande, P. Mukhopadhyay, S. K. Saha, S. A. Rao, R. Murthugudde, and B. N. Goswami, 2014: Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Climate Dyn., 43, 27252745, https://doi.org/10.1007/s00382-014-2089-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., R. P. M. Krishna, P. Mukhopadhyay, M. Khairoutdinov, and B. N. Goswami, 2015: Simulation of the Indian summer monsoon in the superparameterized Climate Forecast System version 2: Preliminary results. J. Climate, 28, 89889012, https://doi.org/10.1175/JCLI-D-14-00607.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., B. Khouider, R. Phani, P. Mukhopadhyay, and A. Majda, 2017a: Improving synoptic and intraseasonal variability in CFSv2 via stochastic representation of organized convection. Geophys. Res. Lett., 44, 11041113, https://doi.org/10.1002/2016GL071542.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., B. Khouider, R. Phani, P. Mukhopadhyay, and A. Majda, 2017b: Improved tropical modes of variability in the NCEP Climate Forecast System (version 2) via a stochastic multicloud model. J. Atmos. Sci., 74, 33393366, https://doi.org/10.1175/JAS-D-17-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottwald, G. A., K. Peters, and L. Davies, 2016: A data-driven method for the stochastic parametrisation of subgrid-scale tropical convective area fraction. Quart. J. Roy. Meteor. Soc., 142, 349359, https://doi.org/10.1002/qj.2655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and P. K. Smolarkiewicz, 1999: CRCP: A Cloud Resolving Convection Parameterization for modeling the tropical convecting atmosphere. Physica D, 133, 171178, https://doi.org/10.1016/S0167-2789(99)00104-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and R. F. Adler, 2012: GPCP version 1.2 1-Degree Daily (1DD) precipitation data set. WDC-A, NCDC, accessed 1 August 2015, http://precip.gsfc.nasa.gov.

  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., D. E. Waliser, J.-L. Li, and C. Woods, 2011: Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-Interim reanalysis. Climate Dyn., 36, 22192232, https://doi.org/10.1007/s00382-010-0853-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., J. K. Eischeid, and R. J. Pyle, 1994: Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. J. Climate, 7, 81105, https://doi.org/10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System model: Preliminary results. Geophys. Res. Lett., 28, 36173620, https://doi.org/10.1029/2001GL013552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouider, B., J. Biello, and A. J. Majda, 2010: A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8, 187216, https://doi.org/10.4310/CMS.2010.v8.n1.a10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Climate, 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., C. Stan, D. A. Randall, R. P. Shukla, and J. L. Kinter III, 2014: Simulation of the South Asian monsoon in a coupled model with an embedded cloud-resolving model. J. Climate, 27, 11211142, https://doi.org/10.1175/JCLI-D-13-00257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 12321240, https://doi.org/10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and J. A. Marengo, 2001: Interannual variability of the rainy season and rainfall in the Brazilian Amazon basin. J. Climate, 14, 43084318, https://doi.org/10.1175/1520-0442(2001)014<4308:IVOTRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maharana, P., and A. P. Dimri, 2016: Study of intraseasonal variability of Indian summer monsoon using a regional climate model. Climate Dyn., 46, 10431064, https://doi.org/10.1007/s00382-015-2631-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC Virtual Global Field Campaign. Bull. Amer. Meteor. Soc., 93, 11711187, https://doi.org/10.1175/BAMS-D-11-00233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, K., C. Jakob, L. Davies, B. Khouider, and A. J. Majda, 2013: Stochastic behavior of tropical convection in observations and a multicloud model. J. Atmos. Sci., 70, 35563575, https://doi.org/10.1175/JAS-D-13-031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, R. S., and G. C. Craig, 2008: A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65, 87105, https://doi.org/10.1175/2007JAS2263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasp, S., T. Selz, and G. C. Craig, 2018: Variability and clustering of midlatitude summertime convection: Testing the Craig and Cohen theory in a convection-permitting ensemble with stochastic boundary layer perturbations. J. Atmos. Sci., 75, 691706, https://doi.org/10.1175/JAS-D-17-0258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2006: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35, https://www.ecmwf.int/sites/default/files/elibrary/2006/14615-newsletter-no110-winter-200607.pdf.

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Umakanth, U., A. P. Kesarkar, A. Raju, and S. V. B. Rao, 2016: Representation of monsoon intraseasonal oscillations in regional climate model: Sensitivity to convective physics. Climate Dyn., 47, 895917, https://doi.org/10.1007/s00382-015-2878-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2012: The “year” of tropical convection (May 2008–April 2010): Climate variability and weather highlights. Bull. Amer. Meteor. Soc., 93, 11891218, https://doi.org/10.1175/2011BAMS3095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, T., S. Wong, and E. J. Fetzer, 2015: Cloud regime evolution in the Indian monsoon intraseasonal oscillation: Connection to large-scale dynamical conditions and the atmospheric water budget. Geophys. Res. Lett., 42, 94659472, https://doi.org/10.1002/2015GL066353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., and G. J. Zhang, 2016: Global climate impacts of stochastic deep convection parameterization in the NCAR CAM5. J. Adv. Model. Earth Syst., 8, 16411656, https://doi.org/10.1002/2016MS000756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., G. J. Zhang, and G. C. Craig, 2016: Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophys. Res. Lett., 43, 66126619, https://doi.org/10.1002/2016GL069818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., G. J. Zhang, and Y.-J. He, 2017: Simulation of precipitation extremes using a stochastic convective parameterization in the NCAR CAM5 under different resolutions. J. Geophys. Res., 122, 12 87512 891, https://doi.org/10.1002/2017JD026901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, S., E. J. Fetzer, B. H. Kahn, B. Tian, B. H. Lambrigtsen, and H. Ye, 2011: Closing the global water vapor budget with AIRS water vapor, MERRA reanalysis, TRMM and GPCP precipitation, and GSSTF surface evaporation. J. Climate, 24, 63076321, https://doi.org/10.1175/2011JCLI4154.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, B., X. Fu, and B. Wang, 2008: Atmosphere-ocean conditions jointly guide convection of the boreal summer intraseasonal oscillation: Satellite observations. J. Geophys. Res., 113, D11105, https://doi.org/10.1029/2007JD009276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, L., R. Fu, E. Shevliakova, and R. E. Dickinson, 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., 41, 31273143, https://doi.org/10.1007/s00382-012-1582-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 1994: Effects of cumulus convection on the simulated monsoon circulation in a general circulation model. Mon. Wea. Rev., 122, 20222038, https://doi.org/10.1175/1520-0493(1994)122<2022:EOCCOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 32 32 13
PDF Downloads 24 24 12

Linking Stochasticity of Convection to Large-Scale Vertical Velocity to Improve Indian Summer Monsoon Simulation in the NCAR CAM5

View More View Less
  • 1 Department of Earth System Science, Tsinghua University, Beijing, China
  • 2 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Department of Earth System Science, Tsinghua University, Beijing, China
  • 3 CMA–NJU Joint Laboratory for Climate Prediction Studies, Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China
© Get Permissions
Restricted access

abstract

The Plant–Craig (PC) stochastic convective parameterization scheme is modified by linking the stochastic generation of convective clouds to the change of large-scale vertical pressure velocity at 500 hPa with time so as to better account for the relationship between convection and the large-scale environment. Three experiments using the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), are conducted: one with the default Zhang–McFarlane deterministic convective scheme, another with the original PC stochastic scheme, and a third with the modified PC stochastic scheme. Evaluation is focused on the simulation of the Indian summer monsoon (ISM), which is a long-standing challenge for all current global circulation models. Results show that the modified stochastic scheme better represents the annual cycle of the climatological mean rainfall over central India and the mean onset date of ISM compared to other simulations. Also, for the simulations of ISM intraseasonal variability for quasi-biweekly and 30–60-day modes, the modified stochastic parameterization produces more realistic propagation and magnitude, especially for the observed northeastward movement of the 30–60-day mode, for which the other two simulations show the propagation in the opposite direction. Causes are investigated through a moisture budget analysis. Compared to the other two simulations, the modified stochastic scheme with an appropriate representation of convection better represents the patterns and amplitudes of large-scale dynamical convergence and moisture advection and thus corrects the monsoon cycle associated with their covariation during the peaks and troughs of intraseasonal oscillation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guang J. Zhang, gzhang@ucsd.edu

abstract

The Plant–Craig (PC) stochastic convective parameterization scheme is modified by linking the stochastic generation of convective clouds to the change of large-scale vertical pressure velocity at 500 hPa with time so as to better account for the relationship between convection and the large-scale environment. Three experiments using the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), are conducted: one with the default Zhang–McFarlane deterministic convective scheme, another with the original PC stochastic scheme, and a third with the modified PC stochastic scheme. Evaluation is focused on the simulation of the Indian summer monsoon (ISM), which is a long-standing challenge for all current global circulation models. Results show that the modified stochastic scheme better represents the annual cycle of the climatological mean rainfall over central India and the mean onset date of ISM compared to other simulations. Also, for the simulations of ISM intraseasonal variability for quasi-biweekly and 30–60-day modes, the modified stochastic parameterization produces more realistic propagation and magnitude, especially for the observed northeastward movement of the 30–60-day mode, for which the other two simulations show the propagation in the opposite direction. Causes are investigated through a moisture budget analysis. Compared to the other two simulations, the modified stochastic scheme with an appropriate representation of convection better represents the patterns and amplitudes of large-scale dynamical convergence and moisture advection and thus corrects the monsoon cycle associated with their covariation during the peaks and troughs of intraseasonal oscillation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Guang J. Zhang, gzhang@ucsd.edu
Save