Unusual Rainfall in Southern China in Decaying August during Extreme El Niño 2015/16: Role of the Western Indian Ocean and North Tropical Atlantic SST

Jiepeng Chen State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Jiepeng Chen in
Current site
Google Scholar
PubMed
Close
,
Xin Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory of Marine Science and Technology, Qingdao, China

Search for other papers by Xin Wang in
Current site
Google Scholar
PubMed
Close
,
Wen Zhou Guy Carpenter Asia–Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China

Search for other papers by Wen Zhou in
Current site
Google Scholar
PubMed
Close
,
Chunzai Wang State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Chunzai Wang in
Current site
Google Scholar
PubMed
Close
,
Qiang Xie State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory of Marine Science and Technology, Qingdao, China
Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China

Search for other papers by Qiang Xie in
Current site
Google Scholar
PubMed
Close
,
Gang Li Xichang Satellite Launch Center, Xichang, China

Search for other papers by Gang Li in
Current site
Google Scholar
PubMed
Close
, and
Sheng Chen State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Search for other papers by Sheng Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous research has suggested that the anomalous western North Pacific anticyclone (WNPAC) can generally persist from an El Niño mature winter to the subsequent summer, influencing southern China precipitation significantly, where southern China includes the Yangtze River valley and South China. Since the late 1970s, three extreme El Niño events have been recorded: 1982/83, 1997/98, and 2015/16. There was a sharp contrast in the change in southern China rainfall and corresponding atmospheric circulations in the decaying August between the 2015/16 extreme El Niño event and the earlier two extreme El Niño events. Enhanced rainfall in the middle and upper reaches of the Yangtze River and suppressed rainfall over South China resulted from basinwide warming in the tropical Indian Ocean induced by the extreme El Niño in August 1983 and 1998, which was consistent with previous studies. However, an anomalous western North Pacific cyclone emerged in August 2016 and then caused positive rainfall anomalies over South China and negative rainfall anomalies from the Yangtze River to the middle and lower reaches of the Yellow River. Without considering the effect of the long-term global warming trend, in August 2016 the negative SST anomalies over the western Indian Ocean and cooling in the north tropical Atlantic contributed to the anomalous western North Pacific cyclone and a rainfall anomaly pattern with opposite anomalies in South China and the Yangtze River region. Numerical experiments with the CAM5 model are conducted to confirm that cooler SST in the western Indian Ocean contributed more than cooler SST in the north tropical Atlantic to the anomalous western North Pacific cyclone and anomalous South China rainfall.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Wang, wangxin@scsio.ac.cn

Abstract

Previous research has suggested that the anomalous western North Pacific anticyclone (WNPAC) can generally persist from an El Niño mature winter to the subsequent summer, influencing southern China precipitation significantly, where southern China includes the Yangtze River valley and South China. Since the late 1970s, three extreme El Niño events have been recorded: 1982/83, 1997/98, and 2015/16. There was a sharp contrast in the change in southern China rainfall and corresponding atmospheric circulations in the decaying August between the 2015/16 extreme El Niño event and the earlier two extreme El Niño events. Enhanced rainfall in the middle and upper reaches of the Yangtze River and suppressed rainfall over South China resulted from basinwide warming in the tropical Indian Ocean induced by the extreme El Niño in August 1983 and 1998, which was consistent with previous studies. However, an anomalous western North Pacific cyclone emerged in August 2016 and then caused positive rainfall anomalies over South China and negative rainfall anomalies from the Yangtze River to the middle and lower reaches of the Yellow River. Without considering the effect of the long-term global warming trend, in August 2016 the negative SST anomalies over the western Indian Ocean and cooling in the north tropical Atlantic contributed to the anomalous western North Pacific cyclone and a rainfall anomaly pattern with opposite anomalies in South China and the Yangtze River region. Numerical experiments with the CAM5 model are conducted to confirm that cooler SST in the western Indian Ocean contributed more than cooler SST in the north tropical Atlantic to the anomalous western North Pacific cyclone and anomalous South China rainfall.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xin Wang, wangxin@scsio.ac.cn
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. S. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., R. G. Wu, and Z. P. Wen, 2012: Contribution of South China Sea tropical cyclones to an increase in southern China summer rainfall around 1993. Adv. Atmos. Sci., 29, 585598, https://doi.org/10.1007/s00376-011-1181-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., Z. P. Wen, R. G. Wu, Z. S. Chen, and P. Zhao, 2014: Interdecadal changes in the relationship between SC winter-spring precipitation and ENSO. Climate Dyn., 43, 13271338, https://doi.org/10.1007/s00382-013-1947-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., Z. P. Wen, R. G. Wu, Z. S. Chen, and P. Zhao, 2015: Influences of northward propagating 25–90-day and quasi-biweekly oscillations on eastern China summer rainfall. Climate Dyn., 45, 105124, https://doi.org/10.1007/s00382-014-2334-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. P., Z. P. Wen, R. G. Wu, X. Wang, C. He, and Z. S. Chen, 2017: An interdecadal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dyn., 48, 191207, https://doi.org/10.1007/s00382-016-3069-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, L., T. Li, B. Wang, and L. Wang, 2017: Formation mechanism for 2015/16 super El Niño. Sci. Rep., 7, 2975, https://doi.org/10.1038/s41598-017-02926-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Z. S., Y. Du, Z. P. Wen, R. G. Wu, and C. Z. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: Role of southeast tropical Indian Ocean warming. Climate Dyn., 50, 47074719, https://doi.org/10.1007/s00382-017-3899-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., S. P. Xie, G. Huang, and K. M. Hu, 2009: Role of air–sea interaction in the long persistence of El Niño–induced north Indian Ocean warming. J. Climate, 22, 20232038, https://doi.org/10.1175/2008JCLI2590.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2011: ERA-Interim project, version 2. European Centre for Medium-Range Weather Forecasts, accessed 4 April 2017, http://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/.

  • Glantz, M. H., 2001: Lessons learned from the 1997–98 El Niño: Once burned, twice shy? United Nations University Press, 294 pp.

  • Ham, Y. G., J. S. Kug, J. Y. Park, and F. F. Jin, 2013: Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/southern oscillation events. Nat. Geosci., 6, 112116, https://doi.org/10.1038/ngeo1686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z. Q., and R. G. Wu, 2013a: Coupled seasonal variability in the South China Sea. J. Oceanogr., 69, 5769, https://doi.org/10.1007/s10872-012-0157-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z. Q., and R. G. Wu, 2013b: Seasonality of interannual atmosphere–ocean interaction in the South China Sea. J. Oceanogr., 69, 699712, https://doi.org/10.1007/s10872-013-0201-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, Z. Q., and R. G. Wu, 2014: Indo-Pacific remote forcing in summer rainfall variability over the South China Sea. Climate Dyn., 42, 23232337, https://doi.org/10.1007/s00382-014-2123-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, K., S. Xie, and G. Huang, 2017: Orographically anchored El Niño effect on summer rainfall in central China. J. Climate, 30, 10 03710 045, https://doi.org/10.1175/JCLI-D-17-0312.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. H., and J. L. Kinter, 2002: Interannual variability in the tropical Indian Ocean. J. Geophys. Res., 107, 3199, https://doi.org/10.1029/2001JC001278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2009: The Japanese 55-year Reanalysis (JRA55) project. JMA/Climate Prediction Division/Global Environment and Marine Department, accessed 31 March 2017, http://jra.kishou.go.jp/JRA-55/index_en.html.

  • Julian, P. R., and R. M. Chervin, 1978: Study of southern oscillation and Walker circulation phenomenon. Mon. Wea. Rev., 106, 14331451, https://doi.org/10.1175/1520-0493(1978)106<1433:ASOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 13631382, https://doi.org/10.1175/BAMS-D-16-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., J. P. Chen, X. Wang, Y. K. Tan, and X. H. Jiang, 2017: Modulation of Pacific Decadal Oscillation on the relationship of El Niño with southern China rainfall during early boreal winter. Atmos. Sci. Lett., 18, 336341, https://doi.org/10.1002/asl.761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S. L., J. Lu, G. Huang, and K. M. Hu, 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 60806088, https://doi.org/10.1175/2008JCLI2433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lim, Y. K., R. M. Kovach, S. Pawson, and G. Vernieres, 2017: The 2015/16 El Niño event in context of the MERRA-2 reanalysis: A comparison of the tropical Pacific with 1982/83 and 1997/98. J. Climate, 30, 48194842, https://doi.org/10.1175/JCLI-D-16-0800.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and N. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masumoto, Y., and G. Meyers, 1998: Forced Rossby waves in the southern tropical Indian Ocean. J. Geophys. Res., 103, 27 58927 602, https://doi.org/10.1029/98JC02546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 2003: Hadley Centre Sea Ice and SST (HadISST), version 1. Met Office Hadley Centre for Climate Change, accessed 23 December 2016, https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.

  • Neal, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • NOAA/OAR/ESRL, 1997: CPC Merged Analysis of Precipitation excluding NCEP Reanalysis, continuing from January 1979 (updated monthly). NOAA/OAR/ESRL Physical Sciences Division (PSD), accessed 24 February 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html#plot.

  • NOAA/OAR/ESRL, 2003a: Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present), version 2.3. NOAA/OAR/ESRL Physical Sciences Division (PSD), accessed 27 June 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html.

  • NOAA/OAR/ESRL, 2003b: NOAA Extended Reconstructed Sea Surface Temperature, version 3b. NOAA/OAR/ESRL Physical Sciences Division (PSD), accessed 22 March 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.v3.html.

  • NOAA/OAR/ESRL, 2004: NCEP Global Ocean Data Assimilation System (GODAS). NOAA/OAR/ESRL Physical Sciences Division (PSD), accessed 6 February 2018, https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html#detail.

  • Oort, A. H., and J. J. Yienger, 1996: Observed interannual variability in the Hadley circulation and its connection to ENSO. J. Climate, 9, 27512767, https://doi.org/10.1175/1520-0442(1996)009<2751:OIVITH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paek, H., J. Y. Yu, and C. Qian, 2017: Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett., 44, 18481856, https://doi.org/10.1002/2016GL071515.

    • Search Google Scholar
    • Export Citation
  • Perigaud, C., and P. Delecluse, 1993: Interannual sea level variations in the tropical Indian Ocean from Geosat and shallow water simulations. J. Phys. Oceanogr., 23, 19161934, https://doi.org/10.1175/1520-0485(1993)023<1916:ISLVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: A global analysis of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ren, R., S. Sun, Y. Yang, and Q. Li, 2016: Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase. Climate Dyn., 47, 18271844, https://doi.org/10.1007/s00382-015-2935-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T., R. Reynolds, T. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, https://doi.org/10.1175/2007JCLI2100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development? J. Climate, 15, 32523265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. Z. Wang, 2014: Different impacts of various El Niño events on the Indian Ocean Dipole. Climate Dyn., 42, 9911005, https://doi.org/10.1007/s00382-013-1711-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, and S. A. Rao, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663674, https://doi.org/10.1007/s00382-008-0394-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Li, and T. J. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Niño decaying summer. J. Climate, 23, 29742986, https://doi.org/10.1175/2010JCLI3300.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., and S. W. Yeh, 2010: A further study of the tropical Indian Ocean asymmetric mode in boreal spring. J. Geophys. Res., 115, D08101, https://doi.org/10.1029/2009JD012999.

    • Search Google Scholar
    • Export Citation
  • Wu, R. G., Z. Z. Hu, and B. P. Kirtman, 2003: Evolution of ENSO-related rainfall anomalies in East Asia. J. Climate, 16, 37423758, https://doi.org/10.1175/1520-0442(2003)016<3742:EOERAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., B. P. Kirtman, and V. Krishnamurthy, 2008: An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J. Geophys. Res., 113, D05104, https://doi.org/10.1029/2007JD009316.

    • Search Google Scholar
    • Export Citation
  • Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., H. Annamalai, F. A. Schott, and J. P. McCreary, 2002: Structure and mechanisms of south Indian Ocean climate variability. J. Climate, 15, 864878, https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., Y. Kosaka, Y. Du, K. M. Hu, J. S. Chowdary, and G. Huang, 2016: Indo-Western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Adv. Atmos. Sci., 33, 411432, https://doi.org/10.1007/s00376-015-5192-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J. L., Q. Y. Liu, S. P. Xie, Z. Y. Liu, and L. X. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, W. D., B. Q. Xiang, L. Liu, and N. Liu, 2005: Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys. Res. Lett., 32, L24706, https://doi.org/10.1029/2005GL024327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 77027722, https://doi.org/10.1175/JCLI-D-11-00576.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., S. Yang, and Z. Zhang, 2012: Different evolutions of the Philippine Sea anticyclone between the eastern and central Pacific El Niño: Possible effects of Indian Ocean SST. J. Climate, 25, 78677883, https://doi.org/10.1175/JCLI-D-12-00004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, Y., H. Gao, W. J. Li, Y. J. Liu, L. J. Chen, B. Zhou, and Y. H. Ding, 2017: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteor. Res., 31, 261277, https://doi.org/10.1007/s13351-017-6192-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhan, R., Y. Wang, and Q. Liu, 2017: Salient differences in tropical cyclone activity over the western North Pacific between 1998 and 2016. J. Climate, 30, 99799997, https://doi.org/10.1175/JCLI-D-17-0263.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., and A. Sumi, 2002: Moisture circulation over East Asia during El Niño episode. J. Meteor. Soc. Japan, 80, 213227, https://doi.org/10.2151/jmsj.80.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 706 306 47
PDF Downloads 523 176 22