Drought Monitoring of Southwestern China Using Insufficient GRACE Data for the Long-Term Mean Reference Frame under Global Change

Chuanpeng Zhao State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Chuanpeng Zhao in
Current site
Google Scholar
PubMed
Close
,
Yaohuan Huang State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Yaohuan Huang in
Current site
Google Scholar
PubMed
Close
,
Zhonghua Li State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhonghua Li in
Current site
Google Scholar
PubMed
Close
, and
Mingxing Chen State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Mingxing Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global changes, such as human activities and climate change, increase the odds of worsening drought. The Gravity Recovery and Climate Experiment (GRACE) satellite provides an opportunity to monitor drought levels by the total amount of water, instead of using a small finite set of water cycle elements or indirect indicators. The potential gap lies in the insufficient size of the GRACE record. The database does not meet the requirements of a stationary annual cycle calculated over a relatively long period as recommended by the IPCC, and the disturbance from long-term global changes is often not considered. In this work, a GRACE-based modulated water deficit (GRACE-MWD) process for drought monitoring under the modulated annual cycle (MAC) reference frame in southwest China was proposed. GRACE-MWD achieved a higher ratio of agreement with the standardized precipitation evapotranspiration index at a time scale of 3 months (SPEI03): it ranged from 0.48 to 0.84, while the GRACE-based drought severity index (GRACE-DSI) ranged from 0.48 to 0.68. Compared with remote sensing datasets widely used in drought monitoring, GRACE-MWD data are less affected by seasonality from land-cover categories, which benefit from the MAC reference frame. The ratio-of-agreement metric for the study area showed that GRACE-MWD had a time scale between 7 and 11 months in reference to SPEI and the standardized precipitation index (SPI). The stability of the MAC reference frame to GRACE-MWD was further discussed when GRACE records were extended and was more stable than that of the stationary annual cycle. GRACE-MWD meets global changes via an adaptive reference frame, which is worthy of generalizing to global applications.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yaohuan Huang, huangyh@igsnrr.ac.cn

Abstract

Global changes, such as human activities and climate change, increase the odds of worsening drought. The Gravity Recovery and Climate Experiment (GRACE) satellite provides an opportunity to monitor drought levels by the total amount of water, instead of using a small finite set of water cycle elements or indirect indicators. The potential gap lies in the insufficient size of the GRACE record. The database does not meet the requirements of a stationary annual cycle calculated over a relatively long period as recommended by the IPCC, and the disturbance from long-term global changes is often not considered. In this work, a GRACE-based modulated water deficit (GRACE-MWD) process for drought monitoring under the modulated annual cycle (MAC) reference frame in southwest China was proposed. GRACE-MWD achieved a higher ratio of agreement with the standardized precipitation evapotranspiration index at a time scale of 3 months (SPEI03): it ranged from 0.48 to 0.84, while the GRACE-based drought severity index (GRACE-DSI) ranged from 0.48 to 0.68. Compared with remote sensing datasets widely used in drought monitoring, GRACE-MWD data are less affected by seasonality from land-cover categories, which benefit from the MAC reference frame. The ratio-of-agreement metric for the study area showed that GRACE-MWD had a time scale between 7 and 11 months in reference to SPEI and the standardized precipitation index (SPI). The stability of the MAC reference frame to GRACE-MWD was further discussed when GRACE records were extended and was more stable than that of the stationary annual cycle. GRACE-MWD meets global changes via an adaptive reference frame, which is worthy of generalizing to global applications.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yaohuan Huang, huangyh@igsnrr.ac.cn
Save
  • AghaKouchak, A., A. Farahmand, F. Melton, J. Teixeira, M. Anderson, B. D. Wardlow, and C. Hain, 2015: Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys., 53, 452480, https://doi.org/10.1002/2014RG000456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, R., and Coauthors, 2016: Validation of the ESA CCI soil moisture product in China. Int. J. Appl. Earth Obs. Geoinf., 48, 2836, https://doi.org/10.1016/j.jag.2015.09.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, M. C., C. Hain, B. Wardlow, A. Pimstein, J. R. Mecikalski, and W. P. Kustas, 2011: Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Climate, 24, 20252044, https://doi.org/10.1175/2010JCLI3812.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnhart, B. L., H. K. W. Nandage, and W. Eichinger, 2011: Assessing discontinuous data using ensemble empirical mode decomposition. Adv. Adapt. Data Anal., 3, 483491, https://doi.org/10.1142/S179353691100091X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, B., Z. W. Kundzewicz, S. Wu, and J. P. Palutikof, Eds., 2008: Climate change and water. IPCC Tech. Paper VI, 214 pp., https://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf.

  • Brown, J. F., B. D. Wardlow, T. Tadesse, M. J. Hayes, and B. C. Reed, 2008: The vegetation drought response index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens., 45, 1646, https://doi.org/10.2747/1548-1603.45.1.16.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. L., C. R. Wilson, B. D. Tapley, Z. L. Yang, and G. Y. Niu, 2009: 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J. Geophys. Res., 114, B05404, https://doi.org/10.1029/2008JB006056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Zhang, M. Zhang, Y. Feng, Z. Wu, F. Qiao, and N. E. Huang, 2013: Intercomparison between observed and simulated variability in global ocean heat content using empirical mode decomposition, Part I: Modulated annual cycle. Climate Dyn., 41, 27972815, https://doi.org/10.1007/s00382-012-1554-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., 2011: Drought under global warming: A review. Wiley Interdiscip. Rev.: Climate Change, 2, 4565, https://doi.org/10.1002/wcc.81.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2013: Increasing drought under global warming in observations and models. Nat. Climate Change, 3, 5258, https://doi.org/10.1038/nclimate1633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Z., J. Du, J. Li, W. Li, and J. Chen, 2008: Runoff characteristics of the Changjiang River during 2006: Effect of extreme drought and the impounding of the Three Gorges Dam. Geophys. Res. Lett., 35, L07406, https://doi.org/10.1029/2008GL033456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dorigo, W., and Coauthors, 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380395, https://doi.org/10.1016/j.rse.2014.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ershadi, A., M. F. McCabe, J. P. Evans, and J. P. Walker, 2013: Effects of spatial aggregation on the multi-scale estimation of evapotranspiration. Remote Sens. Environ., 131, 5162, https://doi.org/10.1016/j.rse.2012.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Famiglietti, J. S., and Coauthors, 2011: Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett., 38, L03403, https://doi.org/10.1029/2010GL046442.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griffin, D., and K. J. Anchukaitis, 2014: How unusual is the 2012–2014 California drought? Geophys. Res. Lett., 41, 90179023, https://doi.org/10.1002/2014GL062433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haddeland, I., and Coauthors, 2014: Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA, 111, 32513256, https://doi.org/10.1073/pnas.1222475110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hallegatte, S., J.-C. Hourcade, and P. Ambrosi, 2007: Using climate analogues for assessing climate change economic impacts in urban areas. Climatic Change, 82, 4760, https://doi.org/10.1007/s10584-006-9161-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawinkel, P., E. Swinnen, S. Lhermitte, B. Verbist, J. Van Orshoven, and B. Muys, 2015: A time series processing tool to extract climate-driven interannual vegetation dynamics using ensemble empirical mode decomposition (EEMD). Remote Sens. Environ., 169, 375389, https://doi.org/10.1016/j.rse.2015.08.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heim, R. R., Jr., 2002: A review of twentieth-century drought indices used in the United States. Bull. Amer. Meteor. Soc., 83, 11491166, https://doi.org/10.1175/1520-0477-83.8.1149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Houborg, R., M. Rodell, B. Li, R. Reichle, and B. F. Zaitchik, 2012: Drought indicators based on model‐assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations. Water Resour. Res., 48, W07525, https://doi.org/10.1029/2011WR011291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H., 2009: Cause analysis of high temperature and drought in 2006 summer in Yunan Province. Yunnan Geogr. Environ. Res., 3, 149153.

    • Search Google Scholar
    • Export Citation
  • Huang, N. E., and Z. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, https://doi.org/10.1029/2007RG000228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. Xu, H. Yang, J. Wang, D. Jiang, and C. Zhao, 2015: Temporal and spatial variability of droughts in southwest China from 1961 to 2012. Sustainability, 7, 13 59713 609, https://doi.org/10.3390/su71013597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.

  • Karnieli, A., and Coauthors, 2010: Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Climate, 23, 618633, https://doi.org/10.1175/2009JCLI2900.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambin, E. F., and M. Linderman, 2006: Time series of remote sensing data for land change science. IEEE Trans. Geosci. Remote Sens., 44, 19261928, https://doi.org/10.1109/TGRS.2006.872932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landerer, F. W., and S. Swenson, 2012: Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res., 48, W04531, https://doi.org/10.1029/2011WR011453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and T. B. M. J. Ouarda, 2012: An EMD and PCA hybrid approach for separating noise from signal, and signal in climate change detection. Int. J. Climatol., 32, 624634, https://doi.org/10.1002/joc.2299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., B. He, X. Quan, Z. Liao, and X. Bai, 2015: Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in southwest China from 1982–2012. Remote Sens., 7, 10 91710 937, https://doi.org/10.3390/rs70810917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, D.-C., Z.-L. Guo, F.-P. An, and F.-L. Zeng, 2012: Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression. Mech. Syst. Signal Process., 31, 1328, https://doi.org/10.1016/j.ymssp.2012.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., X. Xu, A. Y. Sun, K. Wang, W. Liu, and X. Zhang, 2014: Is southwestern China experiencing more frequent precipitation extremes? Environ. Res. Lett., 9, 064002, https://doi.org/10.1088/1748-9326/9/6/064002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y. Y., R. M. Parinussa, W. A. Dorigo, R. A. M. de Jeu, W. Wagner, A. I. J. M. van Dijk, M. F. McCabe, and J. P. Evans, 2011: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci., 15, 425436, https://doi.org/10.5194/hess-15-425-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, E., Y. Luo, R. Zhang, Q. Wu, and L. Liu, 2011: Regional atmospheric anomalies responsible for the 2009–2010 severe drought in China. J. Geophys. Res., 116, D21114, https://doi.org/10.1029/2011JD015706.

    • Search Google Scholar
    • Export Citation
  • Lu, E., W. Cai, Z. Jiang, Q. Zhang, C. Zhang, R. W. Higgins, and M. S. Halpert, 2014: The day-to-day monitoring of the 2011 severe drought in China. Climate Dyn., 43, 19, https://doi.org/10.1007/s00382-013-1987-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martínez, B., and M. A. Gilabert, 2009: Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ., 113, 18231842, https://doi.org/10.1016/j.rse.2009.04.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc. Eighth Conf. on Applied Climatology, Anaheim, CA, Amer. Meteor. Soc., 179–183.

  • Milly, P. C., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer, 2008: Stationarity is dead: Whither water management? Science, 319, 573574, https://doi.org/10.1126/science.1151915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mishra, A. K., and V. P. Singh, 2010: A review of drought concepts. J. Hydrol., 391, 202216, https://doi.org/10.1016/j.jhydrol.2010.07.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., and P. D. Jones, 2005: An improved method of constructing a database of monthly climate observations and associated high‐resolution grids. Int. J. Climatol., 25, 693712, https://doi.org/10.1002/joc.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moron, V., A. W. Robertson, and M. Ghil, 2012: Impact of the modulated annual cycle and intraseasonal oscillation on daily-to-interannual rainfall variability across monsoonal India. Climate Dyn., 38, 24092435, https://doi.org/10.1007/s00382-011-1253-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahl-Wostl, C., 2007: Transitions towards adaptive management of water facing climate and global change. Water Resour. Manage., 21, 4962, https://doi.org/10.1007/s11269-006-9040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palmer, W. C., 1965: Meteorological drought. U.S. Weather Bureau Research Paper 45, 58 pp.

  • Parsons, L. A., G. R. Loope, J. T. Overpeck, T. R. Ault, R. Stouffer, and J. E. Cole, 2017: Temperature and precipitation variance in CMIP5 simulations and paleoclimate records of the last millennium. J. Climate, 30, 88858912, https://doi.org/10.1175/JCLI-D-16-0863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piao, S., and Coauthors, 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 4351, https://doi.org/10.1038/nature09364.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potop, V., C. Boroneanţ, M. Možný, P. Štěpánek, and P. Skalák, 2014: Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol., 115, 563581, https://doi.org/10.1007/s00704-013-0908-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and P. J. Lamb, 2003: African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 10241027, https://doi.org/10.1126/science.1089915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, Z. Wu, and Z. Yan, 2009: On the secular change of spring onset at Stockholm. Geophys. Res. Lett., 36, L12706, https://doi.org/10.1029/2009GL038617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, C., C. Fu, and Z. Wu, 2011: Changes in the amplitude of the temperature annual cycle in China and their implication for climate change research. J. Climate, 24, 52925302, https://doi.org/10.1175/JCLI-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raynolds, M. K., J. C. Comiso, D. A. Walker, and D. Verbyla, 2008: Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sens. Environ., 112, 18841894, https://doi.org/10.1016/j.rse.2007.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reshef, D. N., and Coauthors, 2011: Detecting novel associations in large data sets. Science, 334, 15181524, https://doi.org/10.1126/science.1205438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., I. Velicogna, and J. S. Famiglietti, 2009: Satellite-based estimates of groundwater depletion in India. Nature, 460, 9991002, https://doi.org/10.1038/nature08238.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruzmaikin, A., and J. Feynman, 2009: Search for climate trends in satellite data. Adv. Adapt. Data Anal., 1, 667679, https://doi.org/10.1142/S1793536909000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The drought monitor. Bull. Amer. Meteor. Soc., 83, 11811190, https://doi.org/10.1175/1520-0477-83.8.1181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., 2012: GRACE monthly land water mass grids NETCDF release 5.0, version 5.0. PO.DAAC, accessed 15 August 2012, https://doi.org/10.5067/TELND-NC005.

  • Swenson, S., and P. C. D. Milly, 2006: Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour. Res., 42, W03201, https://doi.org/10.1029/2005WR004628.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., and J. Wahr, 2006: Post‐processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, https://doi.org/10.1029/2005GL025285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swenson, S., D. Chambers, and J. Wahr, 2008: Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113, B08410, https://doi.org/10.1029/2007JB005338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, 2004a: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, https://doi.org/10.1029/2004GL019920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, 2004b: GRACE measurements of mass variability in the Earth system. Science, 305, 503505, https://doi.org/10.1126/science.1099192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell, 2014: A GRACE‐based water storage deficit approach for hydrological drought characterization. Geophys. Res. Lett., 41, 15371545, https://doi.org/10.1002/2014GL059323.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield, 2014: Global warming and changes in drought. Nat. Climate Change, 4, 1722, https://doi.org/10.1038/nclimate2067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S., 2013: Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements. Courier Corporation, 256 pp.

  • van Dijk, A. I. J. M., H. E. Beck, R. S. Crosbie, R. A. M. de Jeu, Y. Y. Liu, G. M. Podger, B. Timbal, and N. R. Viney 2013: The Millennium Drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res., 49, 10401057, https://doi.org/10.1002/wrcr.20123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van Loon, A., E. Tijdeman, N. Wanders, H. Van Lanen, A. Teuling, and R. Uijlenhoet, 2014: How climate seasonality modifies drought duration and deficit. J. Geophys. Res. Atmos., 119, 46404656, https://doi.org/10.1002/2013JD020383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 16961718, https://doi.org/10.1175/2009JCLI2909.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J., D. Jiang, Y. Huang, and H. Wang, 2014: Drought analysis of the Haihe River basin based on GRACE terrestrial water storage. Sci. World J., 2014, https://doi.org/10.1155/2014/578372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W.-C., K.-W. Chau, L. Qiu, and Y.-B. Chen, 2015: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Environ. Res., 139, 4654, https://doi.org/10.1016/j.envres.2015.02.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., L. Zhou, M. Liu, J. Zhang, S. Leng, and C. Diao, 2013: Establishing and assessing the integrated surface drought index (ISDI) for agricultural drought monitoring in mid-eastern China. Int. J. Appl. Earth Obs. Geoinf., 23, 397410, https://doi.org/10.1016/j.jag.2012.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, L., Q. Zhang, and Z. Jiang, 2006: Three Gorges Dam affects regional precipitation. Geophys. Res. Lett., 33, L13806, https://doi.org/10.1029/2006GL026780.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., and N. E. Huang, 2009: Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 141, https://doi.org/10.1142/S1793536909000047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: The modulated annual cycle: An alternative reference frame for climate anomalies. Climate Dyn., 31, 823841, https://doi.org/10.1007/s00382-008-0437-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xavier, L., M. Becker, A. Cazenave, L. Longuevergne, W. Llovel, and O. C. Rotunno Filho, 2010: Interannual variability in water storage over 2003–2008 in the Amazon basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens. Environ., 114, 16291637, https://doi.org/10.1016/j.rse.2010.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yirdaw, S. Z., K. R. Snelgrove, and C. O. Agboma, 2008: GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J. Hydrol., 356, 8492, https://doi.org/10.1016/j.jhydrol.2008.04.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, A., and G. Jia, 2013: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ., 134, 1223, https://doi.org/10.1016/j.rse.2013.02.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., G. Gao, W. An, X. Zou, H. Li, and M. Hou, 2017: Timescale differences between SC-PDSI and SPEI for drought monitoring in China. Phys. Chem. Earth, 102, 4858, https://doi.org/10.1016/j.pce.2015.10.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, M., G. A, I. Velicogna, and J. S. Kimball, 2017: Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes. J. Climate, 30, 62976308, https://doi.org/10.1175/JCLI-D-16-0458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y.-M., X. X. Lu, and Y. Zhou, 2008: Sediment flux sensitivity to climate change: A case study in the Longchuanjiang catchment of the upper Yangtze River, China. Global Planet. Change, 60, 429442, https://doi.org/10.1016/j.gloplacha.2007.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1055 156 8
PDF Downloads 631 67 5