Sensitivity of Surface Temperature to Oceanic Forcing via q-Flux Green’s Function Experiments. Part II: Feedback Decomposition and Polar Amplification

Fukai Liu Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Fukai Liu in
Current site
Google Scholar
PubMed
Close
,
Jian Lu Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jian Lu in
Current site
Google Scholar
PubMed
Close
,
Oluwayemi A. Garuba Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Oluwayemi A. Garuba in
Current site
Google Scholar
PubMed
Close
,
Yi Huang Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Yi Huang in
Current site
Google Scholar
PubMed
Close
,
L. Ruby Leung Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Bryce E. Harrop Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Bryce E. Harrop in
Current site
Google Scholar
PubMed
Close
, and
Yiyong Luo Physical Oceanography Laboratory, Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yiyong Luo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A large set of Green’s function-type experiments is performed with q-flux forcings mimicking the effects of the ocean heat uptake (OHU) to examine the global surface air temperature (SAT) sensitivities to the location of the forcing. The result of the experiments confirms the earlier notion derived from experiments with different model complexities that the global mean SAT is far more sensitive to the oceanic forcing from high latitudes than the tropics. Remarkably, no matter in which latitude the q-flux forcings are placed, the SAT response is always characterized by a feature of polar amplification, implicating that it is intrinsic to our climate system. Considerable zonal asymmetry is also present in the efficacy of the tropical OHU, with the tropical eastern Pacific being much more efficient than the Indian Ocean and tropical Atlantic in driving global SAT warming by exciting the leading neutral mode of the SAT that projects strongly onto global mean warming. Using a radiative kernel, feedback analysis is also conducted to unravel the underlying processes responsible for the spatial heterogeneity in the global OHU efficacy, the polar amplification structures, and the tropical altruism of sharing the warmth with remote latitudes. Warming “altruism” for a q flux at a given latitude is also investigated in terms of the ratio of the induced remote latitudes versus the directly forced local warming. It is found that the tropics are much more altruistic than higher latitudes because of the high-energy transport efficiency of the Hadley circulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Lu, jian.lu@pnnl.gov

Abstract

A large set of Green’s function-type experiments is performed with q-flux forcings mimicking the effects of the ocean heat uptake (OHU) to examine the global surface air temperature (SAT) sensitivities to the location of the forcing. The result of the experiments confirms the earlier notion derived from experiments with different model complexities that the global mean SAT is far more sensitive to the oceanic forcing from high latitudes than the tropics. Remarkably, no matter in which latitude the q-flux forcings are placed, the SAT response is always characterized by a feature of polar amplification, implicating that it is intrinsic to our climate system. Considerable zonal asymmetry is also present in the efficacy of the tropical OHU, with the tropical eastern Pacific being much more efficient than the Indian Ocean and tropical Atlantic in driving global SAT warming by exciting the leading neutral mode of the SAT that projects strongly onto global mean warming. Using a radiative kernel, feedback analysis is also conducted to unravel the underlying processes responsible for the spatial heterogeneity in the global OHU efficacy, the polar amplification structures, and the tropical altruism of sharing the warmth with remote latitudes. Warming “altruism” for a q flux at a given latitude is also investigated in terms of the ratio of the induced remote latitudes versus the directly forced local warming. It is found that the tropics are much more altruistic than higher latitudes because of the high-energy transport efficiency of the Hadley circulation.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Lu, jian.lu@pnnl.gov
Save
  • Alexeev, V. A., P. L. Langen, and J. R. Bates, 2005: Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Climate Dyn., 24, 655666, https://doi.org/10.1007/s00382-005-0018-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Armour, K. C., C. M. Bitz, and G. H. Roe, 2013: Time-varying climate sensitivity from regional feedbacks. J. Climate, 26, 45184534, https://doi.org/10.1175/JCLI-D-12-00544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and P. D. Sardeshmukh, 2002: Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J. Climate, 15, 34273442, https://doi.org/10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., S.-I. Shin, and P. D. Sardeshmukh, 2006: Sensitivity of global warming to the pattern of tropical ocean warming. Climate Dyn., 27, 483492, https://doi.org/10.1007/s00382-006-0143-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., K. A. Dahl, and R. J. Stouffer, 2006: Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett., 33, L01702, https://doi.org/10.1029/2005GL024546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, https://doi.org/10.1007/s40641-015-0010-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, P., and Coauthors, 2008: Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci., 1, 444448, https://doi.org/10.1038/ngeo218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine intertropical convergence zone. Climate Dyn., 25, 477496, https://doi.org/10.1007/s00382-005-0040-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crook, J. A., P. M. Forster, and N. Stuber, 2011: Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate, 24, 35753592, https://doi.org/10.1175/2011JCLI3863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011, https://doi.org/10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feldl, N., and G. H. Roe, 2013: Four perspectives on climate feedbacks. Geophys. Res. Lett., 40, 40074011, https://doi.org/10.1002/grl.50711.

  • Forster, P. M. de F., M. Blackburn, R. Glover, and K. P. Shine, 2000: An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model. Climate Dyn., 16, 833849, https://doi.org/10.1007/s003820000083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garcia, D., 2010: Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal., 54, 11671178, https://doi.org/10.1016/j.csda.2009.09.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., and B. A. Klinger, 2016: Ocean heat uptake and interbasin transport of the passive and redistributive components of surface heating. J. Climate, 29, 75077527, https://doi.org/10.1175/JCLI-D-16-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garuba, O. A., J. Lu, F. Liu, and H. A. Singh, 2018: The active role of the ocean in the temporal evolution of climate sensitivity. Geophys. Res. Lett., 45, 306315, https://doi.org/10.1002/2017GL075633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., D. Saint-Martin, D. J. L. Olivié, A. Voldoire, G. Bellon, and S. Tytéca, 2013: Transient climate response in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Climate, 26, 18411857, https://doi.org/10.1175/JCLI-D-12-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and T. Andrews, 2016: Variation in climate sensitivity and feedback parameters during the historical period. Geophys. Res. Lett., 43, 39113920, https://doi.org/10.1002/2016GL068406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Reudy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 68316864, https://doi.org/10.1029/96JD03436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Xia, and X. Tan, 2017: On the pattern of CO2 radiative forcing and poleward energy transport. J. Geophys. Res. Atmos., 122, 10 57810 593, https://doi.org/10.1002/2017JD027221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joshi, M., K. Shine, M. Ponater, N. Stuber, R. Sausen, and L. Li, 2003: A comparison of climate response to different radiative forcings in three general circulation models: Towards an improved metric of climate change. Climate Dyn., 20, 843854, https://doi.org/10.1007/s00382-003-0305-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and S.-P. Xie, 2014: Dependence of climate response on meridional structure of external thermal forcing. J. Climate, 27, 55935600, https://doi.org/10.1175/JCLI-D-13-00622.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 28122827, https://doi.org/10.1175/2009JAS2924.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., K. Park, F.-F. Jin, and M. F. Stuecker, 2017: Common warming pattern emerges irrespective of forcing location. J. Adv. Model. Earth Syst., 9, 24132424, https://doi.org/10.1002/2017MS001083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., B. Medeiros, Y. T. Hwang, A. Gettelman, J. Perket, and M. G. Flanner, 2014: Processes controlling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616622, https://doi.org/10.1002/2013GL058315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, F., J. Lu, O. Garuba, L. Ruby Leung, Y. Luo, and X. Wan, 2018: The sensitivity of surface temperature to oceanic forcing via q-flux Green’s function experiments. Part I: Linear response function. J. Climate, 31, 36253641, https://doi.org/10.1175/JCLI-D-17-0462.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7, 10926, https://doi.org/10.1038/ncomms10926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, J., and M. Cai, 2009: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation. Climate Dyn., 32, 873885, https://doi.org/10.1007/s00382-008-0425-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci., 32, 315, https://doi.org/10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J., J. R. Scott, K. C. Armour, J.-M. Campin, M. Kelley, and A. Romanou, 2015: The ocean’s role in the transient response of climate to abrupt greenhouse gas forcing. Climate Dyn., 44, 22872299, https://doi.org/10.1007/s00382-014-2308-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., I. Tan, D. L. Hartmann, M. D. Zelinka, and T. Storelvmo, 2016: On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs. J. Adv. Model. Earth Syst., 8, 650668, https://doi.org/10.1002/2015MS000589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murphy, D. M., and T. Koop, 2005: Review of the vapour pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteor. Soc., 131, 15391565, https://doi.org/10.1256/qj.04.94.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Peterson, L. C., G. H. Haug, K. A. Hughen, and U. Röhl, 2000: Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science, 290, 19471951, https://doi.org/10.1126/science.290.5498.1947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181184, https://doi.org/10.1038/ngeo2071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., and A. Inamdar, 2006: The radiative forcing due to clouds and water vapor. Frontiers of Climate Modeling, J. T. Kiehl and V. Ramanathan, Eds., Cambridge University Press, 119–151.

    • Crossref
    • Export Citation
  • Read, J. F., and W. J. Gould, 1992: Cooling and freshening of the subpolar North Atlantic Ocean since the 1960s. Nature, 360, 5557, https://doi.org/10.1038/360055a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roe, G. H., N. Feldl, K. C. Armour, Y.-T. Hwang, and D. M. W. Frierson, 2015: The remote impacts of climate feedbacks on regional climate predictability. Nat. Geosci., 8, 135139, https://doi.org/10.1038/ngeo2346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and L. Rayborn, 2016: The effects of ocean heat uptake on transient climate sensitivity. Curr. Climate Change Rep., 2, 190201, https://doi.org/10.1007/s40641-016-0048-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., K. C. Armour, D. S. Battisti, N. Feldl, and D. D. B. Koll, 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 10711078, https://doi.org/10.1002/2013GL058955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rugenstein, M. A. A., K. Caldeira, and R. Knutti, 2016: Dependence of global radiative feedbacks on evolving patterns of surface heat fluxes. Geophys. Res. Lett., 43, 98779885, https://doi.org/10.1002/2016GL070907.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and J. F. B. Mitchell, 2000: The time-dependence of climate sensitivity. Geophys. Res. Lett., 27, 26852688, https://doi.org/10.1029/2000GL011373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soden, B. J., I. M. Held, R. C. Colman, K. M. Shell, J. T. Kiehl, and C. A. Shields, 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 35043520, https://doi.org/11175/2007JCLI2110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, A., and T. DelSole, 2017: Decadal predictability without ocean dynamics. Proc. Natl. Acad. Sci. USA, 114, 21772182, https://doi.org/10.1073/pnas.1614085114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, C. C., and T. Schneider, 2006: Eddy influences on Hadley circulations: Simulations with an idealized GCM. J. Atmos. Sci., 63, 33333350, https://doi.org/10.1175/JAS3821.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, K. D., W. J. Ingram, and J. M. Gregory, 2008: Time variation of effective climate sensitivity in GCMs. J. Climate, 21, 50765090, https://doi.org/10.1175/2008JCLI2371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 23332344, https://doi.org/10.1175/2009JCLI3139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winton, M., S. M. Griffies, B. L. Samuels, J. L. Sarmiento, and T. L. Frölicher, 2013: Connecting changing ocean circulation with changing climate. J. Climate, 26, 22682278, https://doi.org/10.1175/JCLI-D-12-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and G. K. Vallis, 2012: The passive and active nature of ocean heat uptake in idealized climate change experiments. Climate Dyn., 38, 667684, https://doi.org/10.1007/s00382-011-1063-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, C., S. A. Klein, S. Xie, X. Liu, J. S. Boyle, and Y. Zhang, 2012: Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, https://doi.org/10.1029/2012GL051213.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 922 309 13
PDF Downloads 644 188 6