• Adam, O., T. Schneider, and N. Harnik, 2014: Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J. Climate, 27, 74507461, https://doi.org/10.1175/JCLI-D-14-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, O., K. M. Grise, P. Staten, I. Simpson, S. M. Davis, N. A. Davis, D. W. Waugh, and T. Birner, 2018a: TropD: Tropical width diagnostics software package Version 1.0. Zenodo, https://doi.org/10.5281/zenodo.1157043.

    • Crossref
    • Export Citation
  • Adam, O., K. M. Grise, P. Staten, I. Simpson, S. M. Davis, N. A. Davis, D. W. Waugh, and T. Birner, 2018b: The TropD software package: Standardized methods for calculating tropical width diagnostics. Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R., and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J. Climate, 19, 58165842, https://doi.org/10.1175/JCLI3937.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., and M. Kovilakam, 2017: The role of natural climate variability in recent tropical expansion. J. Climate, 30, 63296350, https://doi.org/10.1175/JCLI-D-16-0735.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., S. C. Sherwood, J. R. Norris, and C. S. Zender, 2012: Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 485, 350354, https://doi.org/10.1038/nature11097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. J., J. R. Norris, and M. Kovilakam, 2014: Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat. Geosci., 7, 270274, https://doi.org/10.1038/ngeo2091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Amaya, D. J., N. Siler, S.-P. Xie, and A. J. Miller, 2018: The interplay of internal and forced modes of Hadley cell expansion: Lessons from the global warming hiatus. Climate Dyn., 51, 305319, https://doi.org/10.1007/s00382-017-3921-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Birner, T., S. Davis, and D. Seidel, 2014: The changing width of Earth’s tropical belt. Phys. Today, 67, 3844, https://doi.org/10.1063/PT.3.2620.

  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484, 228232, https://doi.org/10.1038/nature10946.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S., K. Wei, W. Chen, and L. Song, 2014: Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos., 119, 78157832, https://doi.org/10.1002/2014JD021540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Choi, J., S.-W. Son, J. Lu, and S.-K. Min, 2014: Further observational evidence of Hadley cell widening in the Southern Hemisphere. Geophys. Res. Lett., 41, 25902597, https://doi.org/10.1002/2014GL059426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Davis, N., and T. Birner, 2017: On the discrepancies in tropical belt expansion between reanalyses and climate models and among tropical belt width metrics. J. Climate, 30, 12111231, https://doi.org/10.1175/JCLI-D-16-0371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, N., D. J. Seidel, T. Birner, S. M. Davis, and S. Tilmes, 2016: Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations. Atmos. Chem. Phys., 16, 10 08310 095, https://doi.org/10.5194/acp-16-10083-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davis, S. M., and K. H. Rosenlof, 2012: A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J. Climate, 25, 10611078, https://doi.org/10.1175/JCLI-D-11-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2009: ECMWF public datasets web interface: ERA Interim project. ECMWF, accessed 13 February 2017, http://apps.ecmwf.int/datasets/data/interim-full-moda.

  • ECMWF, 2014: ECMWF public datasets web interface: ERA-20C. ECMWF, accessed 13 February 2017, http://apps.ecmwf.int/datasets/data/era20c-moda.

  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., D. W. Waugh, and L. M. Polvani, 2015: Recent Hadley cell expansion: The role of internal atmospheric variability in reconciling modeled and observed trends. Geophys. Res. Lett., 42, 10 82410 831, https://doi.org/10.1002/2015GL066942.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GMAO, 2015: MERRA-2 tavgM_2d_slv_Nx: 2D, monthly mean, time-averaged, single-level, assimilation, single-level diagnostics, version 5.12.4. Goddard Earth Sciences Data and Information Services Center, accessed 13 February 2017, https://doi.org/10.5067/AP1B0BA5PD2K.

    • Crossref
    • Export Citation
  • Grassi, B., G. Redaelli, P. O. Canziani, and G. Visconti, 2012: Effects of the PDO phase on the tropical belt width. J. Climate, 25, 32823290, https://doi.org/10.1175/JCLI-D-11-00244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: The response of midlatitude jets to increased CO2: Distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys. Res. Lett., 41, 68636871, https://doi.org/10.1002/2014GL061638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res. Atmos., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 159–254.

  • Hu, Y., and Q. Fu, 2007: Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys., 7, 52295236, https://doi.org/10.5194/acp-7-5229-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., L. Tao, and J. Liu, 2013: Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv. Atmos. Sci., 30, 790795, https://doi.org/10.1007/s00376-012-2187-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JMA, 2013: JRA-55: Japanese 55-year reanalysis, monthly means and variances. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 13 February 2017, https://doi.org/10.5065/D60G3H5B.

    • Crossref
    • Export Citation
  • Johanson, C. M., and Q. Fu, 2009: Hadley cell widening: Model simulations versus observations. J. Climate, 22, 27132725, https://doi.org/10.1175/2008JCLI2620.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311644, https://doi.org/10.1175/BAMS-83-11-1631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., and L. M. Polvani, 2011: The interannual relationship between the latitude of the eddy-driven jet and the edge of the Hadley cell. J. Climate, 24, 563568, https://doi.org/10.1175/2010JCLI4077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond, 2011: Impact of polar ozone depletion on subtropical precipitation. Science, 332, 951954, https://doi.org/10.1126/science.1202131.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karnauskas, K. B., and C. C. Ummenhofer, 2014: On the dynamics of the Hadley circulation and subtropical drying. Climate Dyn., 42, 22592269, https://doi.org/10.1007/s00382-014-2129-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovilakam, M., and S. Mahajan, 2015: Black carbon aerosol-induced Northern Hemisphere tropical expansion. Geophys. Res. Lett., 42, 49644972, https://doi.org/10.1002/2015GL064559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571576, https://doi.org/10.1038/nclimate1840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., and H. Nguyen, 2015: Regional characteristics of tropical expansion and the role of climate variability. J. Geophys. Res. Atmos., 120, 68096824, https://doi.org/10.1002/2015JD023130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lucas, C., B. Timbal, and H. Nguyen, 2014: The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev.: Climate Change, 5, 89112, https://doi.org/10.1002/wcc.251.

    • Search Google Scholar
    • Export Citation
  • Manney, G. L., and M. I. Hegglin, 2018: Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses. J. Climate, 31, 423448, https://doi.org/10.1175/JCLI-D-17-0303.1; Corrigendum, 31, 1289–1293, https://doi.org/10.1175/JCLI-D-17-0881.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantsis, D. F., S. Sherwood, R. Allen, and L. Shi, 2017: Natural variations of tropical width and recent trends. Geophys. Res. Lett., 44, 38253832, https://doi.org/10.1002/2016GL072097.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691080, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLandress, C., T. G. Shepherd, J. F. Scinocca, D. A. Plummer, M. Sigmond, A. I. Jonsson, and M. C. Reader, 2011: Separating the dynamical effects of climate change and ozone depletion. Part II: Southern Hemisphere troposphere. J. Climate, 24, 18501868, https://doi.org/10.1175/2010JCLI3958.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office Hadley Centre, 2000: Hadley Centre sea ice and sea surface temperature data set (HadISST), version 1.1. Met Office Hadley Centre, accessed 19 September 2017, https://www.metoffice.gov.uk/hadobs/hadisst.

  • Met Office Hadley Centre, 2013: Hadley Centre sea level pressure dataset, near real time product (HadSLP2r). NOAA/ESRL Physical Sciences Division, accessed 13 February 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.hadslp2.html.

  • Min, S.-K., and S.-W. Son, 2013: Multimodel attribution of the Southern Hemisphere Hadley cell widening: Major role of ozone depletion. J. Geophys. Res. Atmos., 118, 30073015, https://doi.org/10.1002/jgrd.50232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEP, 2002: NCEP–DOE AMIP-II reanalysis. NOAA/ESRL Physical Sciences Division, accessed 17 April 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html.

  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, H., H. H. Hendon, E.-P. Lim, G. Boschat, E. Maloney, and B. Timbal, 2018: Variability of the extent of the Hadley circulation in the Southern Hemisphere: A regional perspective. Climate Dyn., 50, 129142, https://doi.org/10.1007/s00382-017-3592-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA, 2014: Monthly NOAA-CIRES 20th century reanalysis (V2c). NOAA/ESRL Physical Sciences Division, accessed 13 February 2017, https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html.

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812, https://doi.org/10.1175/2010JCLI3772.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quan, X.-W., M. P. Hoerling, J. Perlwitz, H. F. Diaz, and T. Xu, 2014: How fast are the tropics expanding? J. Climate, 27, 19992013, https://doi.org/10.1175/JCLI-D-13-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010a: NCEP Climate Forecast System Reanalysis (CFSR) monthly products, January 1979 to December 2010. NCAR Computational and Information Systems Laboratory Research Data Archive, accessed 21 April 2017, https://doi.org/10.5065/D6DN438J.

    • Crossref
    • Export Citation
  • Saha, S., and Coauthors, 2010b: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151058, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, D. F., and K. M. Grise, 2017: The response of local precipitation and sea level pressure to Hadley cell expansion. Geophys. Res. Lett., 44, 10 57310 582, https://doi.org/10.1002/2017GL075380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., Q. Fu, W. J. Randel, and T. J. Reichler, 2008: Widening of the tropical belt in a changing climate. Nat. Geosci., 1, 2124, https://doi.org/10.1038/ngeo.2007.38.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seviour, W. J. M., S. M. Davis, K. M. Grise, and D. W. Waugh, 2018: Large uncertainty in the relative rates of dynamical and hydrological tropical expansion. Geophys. Res. Lett., 45, 11061113, https://doi.org/10.1002/2017GL076335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., and L. M. Polvani, 2016: Highly significant responses to anthropogenic forcings of the midlatitude jet in the Southern Hemisphere. J. Climate, 29, 34633470, https://doi.org/10.1175/JCLI-D-16-0034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, A., L. M. Polvani, D. W. Waugh, and S. M. Davis, 2016: Contrasting upper and lower atmospheric metrics of tropical expansion in the Southern Hemisphere. Geophys. Res. Lett., 43, 10 49610 503, https://doi.org/10.1002/2016GL070917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, https://doi.org/10.1029/2010JD014271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Staten, P. W., and T. Reichler, 2014: On the ratio between shifts in the eddy-driven jet and Hadley cell edge. Climate Dyn., 42, 12291242, https://doi.org/10.1007/s00382-013-1905-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, L., Y. Hu, and J. Liu, 2016: Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Climate Dyn., 46, 33373350, https://doi.org/10.1007/s00382-015-2772-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, J. L., D. W. Waugh, and A. Gnanadesikan, 2015: Southern Hemisphere extratropical circulation: Recent trends and natural variability. Geophys. Res. Lett., 42, 55085515, https://doi.org/10.1002/2015GL064521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokinaga, H., 2012: Wave and anemometer-based sea surface wind (WASWind), version 1.0.1. Kyoto University, accessed 13 February 2017, http://www.dpac.dpri.kyoto-u.ac.jp/tokinaga/waswind.html.

  • Tokinaga, H., and S.-P. Xie, 2011: Wave- and anemometer-based sea surface wind (WASWind) for climate change analysis. J. Climate, 24, 267285, https://doi.org/10.1175/2010JCLI3789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Dong, A. T. Evan, G. R. Foltz, and S.-K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., C. I. Garfinkel, and L. M. Polvani, 2015: Drivers of the recent tropical expansion in the Southern Hemisphere: Changing SSTs or ozone depletion? J. Climate, 28, 65816586, https://doi.org/10.1175/JCLI-D-15-0138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., and Coauthors, 2018: Revisiting the relationship among metrics of tropical expansion. J. Climate, https://doi.org/10.1175/JCLI-D-18-0108, in press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WCRP, 2011: Coupled Model Intercomparison Project, phase 5. Earth System Grid Federation, Lawrence Livermore National Laboratory, accessed 17 July 2017, https://esgf-node.llnl.gov/search/cmip5.

  • Zhang, L., and C. Wang, 2013: Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J. Geophys. Res. Oceans, 118, 57725791, https://doi.org/10.1002/jgrc.20390.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 119 57
PDF Downloads 104 104 49

Regional and Seasonal Characteristics of the Recent Expansion of the Tropics

View More View Less
  • 1 Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
  • 2 NOAA Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
  • 3 Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana
  • 4 Hebrew University of Jerusalem, Jerusalem, Israel
© Get Permissions
Restricted access

Abstract

In recent decades, the subtropical edges of Earth’s Hadley circulation have shifted poleward. Some studies have concluded that this observed tropical expansion is occurring more rapidly than predicted by global climate models. However, recent modeling studies have shown that internal variability can account for a large fraction of the observed circulation trends, at least in an annual-mean, zonal-mean framework. This study extends these previous results by examining the seasonal and regional characteristics of the recent poleward expansion of the Hadley circulation using seven reanalysis datasets, sea level pressure observations, and surface wind observations. The circulation has expanded the most poleward during summer and fall in both hemispheres, with more zonally asymmetric circulation trends occurring in the Northern Hemisphere (NH). The seasonal and regional characteristics of these observed trends generally fall within the range of trends predicted by climate models for the late twentieth and early twenty-first centuries, and in most cases, the magnitude of the observed trends does not exceed the range of interdecadal trends in the models’ control runs, which arise exclusively from internal variability. One exception occurs during NH fall when large observed poleward shifts in the atmospheric circulation over the North Atlantic sector exceed nearly all trends projected by models. While most recent NH circulation trends are consistent with a change in phase of the Pacific decadal oscillation (PDO), the observed circulation trends over the North Atlantic instead reflect 1) large natural variability unrelated to the PDO and/or 2) a climate forcing (or the circulation response to that forcing) that is not properly captured by models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Grise, kmg3r@virginia.edu

Abstract

In recent decades, the subtropical edges of Earth’s Hadley circulation have shifted poleward. Some studies have concluded that this observed tropical expansion is occurring more rapidly than predicted by global climate models. However, recent modeling studies have shown that internal variability can account for a large fraction of the observed circulation trends, at least in an annual-mean, zonal-mean framework. This study extends these previous results by examining the seasonal and regional characteristics of the recent poleward expansion of the Hadley circulation using seven reanalysis datasets, sea level pressure observations, and surface wind observations. The circulation has expanded the most poleward during summer and fall in both hemispheres, with more zonally asymmetric circulation trends occurring in the Northern Hemisphere (NH). The seasonal and regional characteristics of these observed trends generally fall within the range of trends predicted by climate models for the late twentieth and early twenty-first centuries, and in most cases, the magnitude of the observed trends does not exceed the range of interdecadal trends in the models’ control runs, which arise exclusively from internal variability. One exception occurs during NH fall when large observed poleward shifts in the atmospheric circulation over the North Atlantic sector exceed nearly all trends projected by models. While most recent NH circulation trends are consistent with a change in phase of the Pacific decadal oscillation (PDO), the observed circulation trends over the North Atlantic instead reflect 1) large natural variability unrelated to the PDO and/or 2) a climate forcing (or the circulation response to that forcing) that is not properly captured by models.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kevin M. Grise, kmg3r@virginia.edu
Save