Impacts of Saharan Dust on Atlantic Regional Climate and Implications for Tropical Cyclones

Bowen Pan aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Bowen Pan in
Current site
Google Scholar
PubMed
Close
,
Yuan Wang bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
cJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Yuan Wang in
Current site
Google Scholar
PubMed
Close
,
Jiaxi Hu aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Jiaxi Hu in
Current site
Google Scholar
PubMed
Close
,
Yun Lin aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Yun Lin in
Current site
Google Scholar
PubMed
Close
,
Jen-Shan Hsieh aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Jen-Shan Hsieh in
Current site
Google Scholar
PubMed
Close
,
Timothy Logan aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Timothy Logan in
Current site
Google Scholar
PubMed
Close
,
Xidan Feng aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Xidan Feng in
Current site
Google Scholar
PubMed
Close
,
Jonathan H. Jiang cJet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Jonathan H. Jiang in
Current site
Google Scholar
PubMed
Close
,
Yuk L. Yung bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

Search for other papers by Yuk L. Yung in
Current site
Google Scholar
PubMed
Close
, and
Renyi Zhang aDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Renyi Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The radiative and microphysical properties of Saharan dust are believed to impact the Atlantic regional climate and tropical cyclones (TCs), but the detailed mechanism remains uncertain. In this study, atmosphere-only simulations are performed from 2002 to 2006 using the Community Atmospheric Model, version 5.1, with and without dust emission from the Sahara Desert. The Saharan dust exhibits noticeable impacts on the regional longwave and shortwave radiation, cloud formation, and the convective systems over West Africa and the tropical Atlantic. The African easterly jet and West African monsoon are modulated by dust, leading to northward shifts of the intertropical convergence zone and the TC genesis region. The dust events induce positive midlevel moisture and entropy deficit anomalies, enhancing the TC genesis. On the other hand, the increased vertical wind shear and decreased low-level vorticity and potential intensity by dust inhibit TC formation in the genesis region. The ventilation index shows a decrease in the intensification region and an increase in the genesis region by dust, corresponding to favorable and unfavorable TC activities, respectively. The comparison of nondust scenarios in 2005 and 2006 shows more favorable TC conditions in 2005 characterized by higher specific humidity and potential intensity, but lower ventilation index, wind shear, and entropy deficit. Those are attributable to the observed warmer sea surface temperature (SST) in 2005, in which dust effects can be embedded. Our results imply significant dust perturbations on the radiative budget, hydrological cycle, and large-scale environments relevant to TC activity over the Atlantic.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0776.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 7 March 2022 to correct the affiliation of coauthor Feng and to amend the incorrect attribution of support for lead author Pan that was originally published in the Acknowledgments.

Corresponding authors: Renyi Zhang, renyi-zhang@neo.tamu.edu; Yuan Wang, yuan.wang@caltech.edu

Abstract

The radiative and microphysical properties of Saharan dust are believed to impact the Atlantic regional climate and tropical cyclones (TCs), but the detailed mechanism remains uncertain. In this study, atmosphere-only simulations are performed from 2002 to 2006 using the Community Atmospheric Model, version 5.1, with and without dust emission from the Sahara Desert. The Saharan dust exhibits noticeable impacts on the regional longwave and shortwave radiation, cloud formation, and the convective systems over West Africa and the tropical Atlantic. The African easterly jet and West African monsoon are modulated by dust, leading to northward shifts of the intertropical convergence zone and the TC genesis region. The dust events induce positive midlevel moisture and entropy deficit anomalies, enhancing the TC genesis. On the other hand, the increased vertical wind shear and decreased low-level vorticity and potential intensity by dust inhibit TC formation in the genesis region. The ventilation index shows a decrease in the intensification region and an increase in the genesis region by dust, corresponding to favorable and unfavorable TC activities, respectively. The comparison of nondust scenarios in 2005 and 2006 shows more favorable TC conditions in 2005 characterized by higher specific humidity and potential intensity, but lower ventilation index, wind shear, and entropy deficit. Those are attributable to the observed warmer sea surface temperature (SST) in 2005, in which dust effects can be embedded. Our results imply significant dust perturbations on the radiative budget, hydrological cycle, and large-scale environments relevant to TC activity over the Atlantic.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-16-0776.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Publisher's Note: This article was revised on 7 March 2022 to correct the affiliation of coauthor Feng and to amend the incorrect attribution of support for lead author Pan that was originally published in the Acknowledgments.

Corresponding authors: Renyi Zhang, renyi-zhang@neo.tamu.edu; Yuan Wang, yuan.wang@caltech.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.29 MB)
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arguez, A., A. M. Waple, and A. M. Sanchez-Lugo, 2007: State of the climate in 2006. Bull. Amer. Meteor. Soc., 88, 929932, https://doi.org/10.1175/BAMS-88-6-929.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beven, J. L., and Coauthors, 2008: Atlantic hurricane season of 2005. Mon. Wea. Rev., 136, 11091173, https://doi.org/10.1175/2007MWR2074.1.

  • Bister, M., and K. A. Emanuel, 2002: Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, https://doi.org/10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy related combustion, 1850–2000. Global Biogeochem. Cycles, 21, GB2018, https://doi.org/10.1029/2006GB002840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracken, W. E., and L. F. Bosart, 2000: The role of synoptic-scale flow during tropical cyclogenesis over the North Atlantic Ocean. Mon. Wea. Rev., 128, 353376, https://doi.org/10.1175/1520-0493(2000)128<0353:TROSSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretl, S., P. Reutter, C. C. Raible, S. Ferrachat, C. S. Poberaj, L. E. Revell, and U. Lohmann, 2015: The influence of absorbed solar radiation by Saharan dust on hurricane genesis. J. Geophys. Res. Atmos., 120, 19021917, https://doi.org/10.1002/2014JD022441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CALIPSO Science Team, 2015: CALIPSO/CALIOP level 3, lidar all-sky data, version 3.00 (subset CAL_LID_L3_APro_AllSky-Standard-V3-00). NASA Atmospheric Science Data Center (ASDC), accessed August 2017, https://doi.org/10.5067/CALIOP/CALIPSO/CAL_LID_L3_APro_AllSky-Standard-V3-00.

    • Crossref
    • Export Citation
  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193213, https://doi.org/10.1175/1520-0469(1980)037<0193:RHRFSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., S.-H. Wang, and M. Waylonis, 2010: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects. J. Geophys. Res., 115, D21202, https://doi.org/10.1029/2010JD014158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, T.-C., and H. van Loon, 1987: Interannual variation of the tropical easterly jet. Mon. Wea. Rev., 115, 17391759, https://doi.org/10.1175/1520-0493(1987)115<1739:IVOTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., E. P. Nowottnick, C. A. Randles, B. Yi, P. Yang, K.-M. Kim, J. A. Smith, and C. G. Bardeen, 2014: Impact of radiatively interactive dust aerosols in the NASA GEOS‐5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res. Atmos., 119, 753786, https://doi.org/10.1002/2013JD020046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson, 2004: Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE. J. Geophys. Res., 109, D04201, https://doi.org/10.1029/2003JD004032.

    • Search Google Scholar
    • Export Citation
  • d’Almeida, G. A., 1986: A model for Saharan dust transport. J. Climate Appl. Meteor., 25, 903916, https://doi.org/10.1175/1520-0450(1986)025<0903:AMFSDT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers, 2003: Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA, 100, 14 65514 660, https://doi.org/10.1073/pnas.2532677100.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easter, R. C., and Coauthors, 2004: MIRAGE: Model description and evaluation of aerosols and trace gases. J. Geophys. Res., 109, D20210, https://doi.org/10.1029/2004JD004571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and D. S. Nolan, 2004: Tropical cyclone activity and the global climate system. 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL. Amer. Meteor. Soc., 240–241, https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm.

  • Emmons, L. K., and Coauthors, 2010: Description and evaluation of the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev., 3, 4367, https://doi.org/10.5194/gmd-3-43-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, https://doi.org/10.1029/2006GL026408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J. W., R. Zhang, G. Li, and W.-K. Tao, 2007a: Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res., 112, D14204, https://doi.org/10.1029/2006JD008136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, J. W., R. Zhang, G. Li, W.-K. Tao, and X. Li, 2007b: Simulations of cumulus clouds using a spectral microphysics cloud-resolving model. J. Geophys. Res., 112, D04201, https://doi.org/10.1029/2006JD007688.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., R. Zhang, W.-K. Tao, and K. Mohr, 2008: Effects of aerosol optical properties on deep convective clouds and radiative forcing. J. Geophys. Res., 113, D08209, https://doi.org/10.1029/2007JD009257.

    • Search Google Scholar
    • Export Citation
  • Fan, J. W., and Coauthors, 2014: Aerosol impacts on California winter clouds and precipitation during CalWater 2011: Local pollution versus long-range transported dust. Atmos. Chem. Phys., 14, 81101, https://doi.org/10.5194/acp-14-81-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., and D. P. Brown, 2008: Atlantic hurricane season of 2006. Mon. Wea. Rev., 136, 11741200, https://doi.org/10.1175/2007MWR2377.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and R. A. Zaveri, 2007: Parameterization of optical properties for hydrated internally mixed aerosol. J. Geophys. Res., 112, D10201, https://doi.org/10.1029/2006JD007927.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J. H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, https://doi.org/10.1175/JCLI-D-11-00650.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys., 50, RG3005, https://doi.org/10.1029/2012RG000388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Grini, A., and C. S. Zender, 2004: Roles of saltation, sandblasting, and wind speed variability on mineral dust aerosol size distribution during the Puerto Rican Dust Experiment (PRIDE). J. Geophys. Res., 109, D07202, https://doi.org/10.1029/2003JD004233.

    • Search Google Scholar
    • Export Citation
  • Guan, X., J. Huang, Y. Zhang, Y. Xie, and J. Liu, 2016: The relationship between anthropogenic dust and population over global semi-arid regions. Atmos. Chem. Phys., 16, 51595169, https://doi.org/10.5194/acp-16-5159-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hess, M. M., P. P. Koepke, and I. I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831844, https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11 39811 416, https://doi.org/10.1002/2014JD021796.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X., Y. Song, C. Zhao, X. Cai, H. Zhang, and T. Zhu, 2015: Direct radiative effect by multicomponent aerosol over China. J. Climate, 28, 34723495, https://doi.org/10.1175/JCLI-D-14-00365.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, https://doi.org/10.5194/acp-11-7781-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. T. F. Stocker et al., Eds., Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Junker, C., and C. Liousse, 2008: A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997. Atmos. Chem. Phys., 8, 11951207, https://doi.org/10.5194/acp-8-1195-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karydis, V., P. Kumar, D. Barahona, I. Sokolik, and A. Nenes, 2011: On the effect of dust particles on global cloud condensation nuclei and cloud droplet number. J. Geophys. Res., 116, D23204, https://doi.org/10.1029/2011JD016283.

    • Search Google Scholar
    • Export Citation
  • Kaufman, Y. J., I. Koren, L. A. Remer, D. Tanré, P. Ginoux, and S. Fan, 2005: Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res., 110, D10S12, https://doi.org/10.1029/2003JD004436.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-M., W. K.-M. Lau, Y. C. Sud, and G. K. Walker, 2010: Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and eastern Atlantic Ocean using GCM simulations. Climate Dyn., 35, 115126, https://doi.org/10.1007/s00382-010-0750-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafore, J.-P., and Coauthors, 2011: Progress in understanding of weather systems in West Africa. Atmos. Sci. Lett., 12, 712, https://doi.org/10.1002/asl.335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 70177039, https://doi.org/10.5194/acp-10-7017-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and K.-M. Kim, 2007a: How nature foiled the 2006 hurricane forecasts. Eos, Trans. Amer. Geophys. Union, 88, 105107, https://doi.org/10.1029/2007EO090002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and K.-M. Kim, 2007b: Cooling of the Atlantic by Saharan dust. Geophys. Res. Lett., 34, L23811, https://doi.org/10.1029/2007GL031538.

  • Lau, K.-M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855864, https://doi.org/10.1007/s00382-006-0114-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., K. M. Kim, Y. C. Sud, and G. K. Walker, 2009: A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Ann. Geophys., 27, 40234037, https://doi.org/10.5194/angeo-27-4023-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levin, Z., E. Ganor, and V. Gladstein, 1996: The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteor., 35, 15111523, https://doi.org/10.1175/1520-0450(1996)035<1511:TEODPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang, 2008a: Increased winter precipitation over the North Pacific from 1984–1994 to 1995–2005 inferred from the Global Precipitation Climatology Project. Geophys. Res. Lett., 35, L13821, https://doi.org/10.1029/2008GL034668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, and R. Zhang, 2008b: Implementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol–cloud interaction. J. Geophys. Res., 113, D15211, https://doi.org/10.1029/2007JD009361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, G., Y. Wang, K.-H. Lee, Y. Diao, and R. Zhang, 2009: Impacts of aerosols on development and precipitation of a mesoscale squall line. J. Geophys. Res., 114, D17205, https://doi.org/10.1029/2008JD011581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., Y. Wang, B. Pan, J. Hu, Y. Liu, and R. Zhang, 2016: Distinct impacts of aerosols on an evolving continental cloud complex during the RACORO field campaign. J. Atmos. Sci., 73, 36813700, https://doi.org/10.1175/JAS-D-15-0361.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., J. E. Penner, S. J. Ghan, and M. Wang, 2007: Inclusion of ice microphysics in the NCAR Community Atmospheric Model version 3 (CAM3). J Climate, 20, 45264547, https://doi.org/10.1175/JCLI4264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709739, https://doi.org/10.5194/gmd-5-709-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Logan, T., B. Xi, and X. Dong, 2014: Aerosol properties and their influences on marine boundary layer cloud condensation nuclei at the ARM mobile facility over the Azores. J. Geophys. Res. Atmos., 119, 48594872, https://doi.org/10.1002/2013JD021288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59, 647656, https://doi.org/10.1175/1520-0469(2001)059<0647:PAEOIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., M. Yoshioka, W. D. Collins, A. J. Conley, D. W. Fillmore, and D. B. Coleman, 2006: Climate response and radiative forcing from mineral aerosols during the Last Glacial Maximum, pre-industrial, current and doubled-carbon dioxide climates. Geophys. Res. Lett., 33, L20705, https://doi.org/10.1029/2006GL026126.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N., S. Albani, J. F. Kok, S. Engelstaeder, R. Scanza, D. S. Ward, and M. G. Flanner, 2014: The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res., 15, 5371, https://doi.org/10.1016/j.aeolia.2013.09.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mårtensson, E. M., E. D. Nilsson, G. de Leeuw, L. H. Cohen, and H.-C. Hansson, 2003: Laboratory simulations and parameterization of the primary marine aerosol production. J. Geophys. Res., 108, 4297, https://doi.org/10.1029/2002JD002263.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. Demott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 32473267, https://doi.org/10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, https://doi.org/10.1175/2008JCLI2105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, https://doi.org/10.1175/2008JCLI2244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp., http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Nesbitt, S. W., R. Zhang, and R. E. Orville, 2000: Seasonal and global NOx production by lightning estimated from the Optical Transient Detector (OTD). Tellus, 52B, 12061215, https://doi.org/10.3402/tellusb.v52i5.17098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowottnick, E., P. Colarco, A. da Silva, D. Hlavka, and M. McGill, 2011: The fate of Saharan dust across the Atlantic and implications for a Central American dust barrier. Atmos. Chem. Phys., 11, 84158431, https://doi.org/10.5194/acp-11-8415-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and Coauthors, 2001: Enhancement of cloud-to-ground lightning over Houston, Texas. Geophys. Res. Lett., 28, 25972600, https://doi.org/10.1029/2001GL012990.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, https://doi.org/10.1175/2008JCLI2557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, https://doi.org/10.1175/JCLI-D-14-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, J. F., and Coauthors, 2016: Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc. Natl. Acad. Sci. USA, 113, 42664271, https://doi.org/10.1073/pnas.1602310113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2015: MODIS Atmosphere L3 Monthly Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, accessed January 2016, https://doi.org/10.5067/MODIS/MOD08_M3.006.

    • Crossref
    • Export Citation
  • Posselt, R., and U. Lohmann, 2008: Influence of giant CCN on warm rain processes in the ECHAM5 GCM. Atmos. Chem. Phys., 8, 37693788, https://doi.org/10.5194/acp-8-3769-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., and Coauthors, 2009: Relative roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon basin. Nat. Geosci., 2, 402405, https://doi.org/10.1038/ngeo517.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1970: Radon-222 in North Atlantic trade winds: Its relationship to dust transport from Africa. Science, 167, 974977, https://doi.org/10.1126/science.167.3920.974.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randles, C. A., P. R. Colarco, and A. Da Silva, 2013: Direct and semi-direct aerosol effects in the NASA GEOS-5 AGCM: Aerosol–climate interactions due to prognostic versus prescribed aerosols. J. Geophys. Res. Atmos., 118, 149169, https://doi.org/10.1029/2012JD018388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, O., K. M. Lau, A. da Silva, and T. Matsui, 2014: Impact of assimilated and interactive aerosol on tropical cyclogenesis. Geophys. Res. Lett., 41, 32823288, https://doi.org/10.1002/2014GL059918.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and R. Nirel, 1996: Seeding effectiveness—The interaction of desert dust and the southern margins of rain cloud systems in Israel. J. Appl. Meteor., 35, 15021510, https://doi.org/10.1175/1520-0450(1996)035<1502:SEIODD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. Rudich, and R. Lahav, 2001: Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA, 98, 59755980, https://doi.org/10.1073/pnas.101122798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O’Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, https://doi.org/10.1126/science.1160606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Khain, W. R. Cotton, G. Carrió, I. Ginis, and J. H. Golden, 2012: Aerosol effects on microstructure and intensity of tropical cyclones. Bull. Amer. Meteor. Soc., 93, 9871001, https://doi.org/10.1175/BAMS-D-11-00147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepanski, K., I. Tegen, and A. Macke, 2009: Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys., 9, 11731189, https://doi.org/10.5194/acp-9-1173-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seigel, R. B., S. C. van den Heever, and S. M. Saleeby, 2013: Mineral dust indirect effects and cloud radiative feedbacks of a simulated idealized nocturnal squall line. Atmos. Chem. Phys., 13, 44674485, https://doi.org/10.5194/acp-13-4467-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shao, Y., and Coauthors, 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Res., 2, 181204, https://doi.org/10.1016/j.aeolia.2011.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. J., H. Pitcher, and T. M. L. Wigley, 2001: Global and regional anthropogenic sulfur dioxide emissions. Global Planet. Change, 29, 99119, https://doi.org/10.1016/S0921-8181(00)00057-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. J., R. Andres, E. Conception, and J. Lurz, 2004: Historical sulfur dioxide emissions 1850–2000: Methods and results. Tech. Rep. PNNL-14537, Pacific Northwest National Laboratory, Joint Global Change Research Institute, 14 pp.

    • Crossref
    • Export Citation
  • Strong, J. D. O., G. A. Vecchi, and P. Ginoux, 2015: The response of the tropical Atlantic and West African climate to Saharan dust in a fully coupled GCM. J. Climate, 28, 70717092, https://doi.org/10.1175/JCLI-D-14-00797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., G. G. Carrió, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 17521775, https://doi.org/10.1175/JAS3713.1.

    • Crossref