A Climatology of Strong Large-Scale Ocean Evaporation Events. Part I: Identification, Global Distribution, and Associated Climate Conditions

Franziska Aemisegger Centre for Environmental and Climate Research, Lund University, Lund, Sweden, and Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Search for other papers by Franziska Aemisegger in
Current site
Google Scholar
PubMed
Close
and
Lukas Papritz Geophysical Institute, University of Bergen, and Bjerknes Centre for Climate Research, Bergen, Norway

Search for other papers by Lukas Papritz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents an object-based, global climatology (1979–2014) of strong large-scale ocean evaporation (SLOE) and its associated climatic properties. SLOE is diagnosed using an “atmospheric moisture uptake efficiency” criterion related to the ratio of surface evaporation and integrated water vapor content in the near-surface atmosphere. The chosen Eulerian identification procedure focuses on events that strongly contribute to the available near-surface atmospheric humidity. SLOE is particularly frequent along the warm ocean western boundary currents, downstream of large continental areas, and at the sea ice edge in polar regions with frequent cold-air outbreaks. Furthermore, wind-driven SLOE occurs in regions with topographically enforced winds. On a global annual average, SLOE occurs only 6% of the time but explains 22% of total ocean evaporation. An analysis of the past history and fate of air parcels involved in cold season SLOE in the North Atlantic and south Indian Oceans shows that cold-air advection is the main mechanism that induces these events. Extratropical cyclones thereby play an important role in setting the necessary equatorward synoptic flow. Consequently, the interannual variability of SLOE associated with the North Atlantic Oscillation and the southern annular mode reveals a very high sensitivity of SLOE with respect to the location of the storm tracks. This study highlights the strong link between transient synoptic events and the spatiotemporal variability in ocean evaporation patterns, which cannot be deduced from thermodynamic steady-state and climate mean state considerations alone.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0592.1.

Corresponding author: Franziska Aemisegger, franziska.aemisegger@env.ethz.ch

Abstract

This paper presents an object-based, global climatology (1979–2014) of strong large-scale ocean evaporation (SLOE) and its associated climatic properties. SLOE is diagnosed using an “atmospheric moisture uptake efficiency” criterion related to the ratio of surface evaporation and integrated water vapor content in the near-surface atmosphere. The chosen Eulerian identification procedure focuses on events that strongly contribute to the available near-surface atmospheric humidity. SLOE is particularly frequent along the warm ocean western boundary currents, downstream of large continental areas, and at the sea ice edge in polar regions with frequent cold-air outbreaks. Furthermore, wind-driven SLOE occurs in regions with topographically enforced winds. On a global annual average, SLOE occurs only 6% of the time but explains 22% of total ocean evaporation. An analysis of the past history and fate of air parcels involved in cold season SLOE in the North Atlantic and south Indian Oceans shows that cold-air advection is the main mechanism that induces these events. Extratropical cyclones thereby play an important role in setting the necessary equatorward synoptic flow. Consequently, the interannual variability of SLOE associated with the North Atlantic Oscillation and the southern annular mode reveals a very high sensitivity of SLOE with respect to the location of the storm tracks. This study highlights the strong link between transient synoptic events and the spatiotemporal variability in ocean evaporation patterns, which cannot be deduced from thermodynamic steady-state and climate mean state considerations alone.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article has a companion article which can be found at http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-17-0592.1.

Corresponding author: Franziska Aemisegger, franziska.aemisegger@env.ethz.ch
Save
  • Aemisegger, F., 2013: Atmospheric stable water isotope measurements at the timescale of extratropical weather systems. Ph.D. dissertation 21165, ETH Zurich, Zurich, Switzerland, 242 pp., https://www.research-collection.ethz.ch/handle/20.500.11850/73321.

  • Aemisegger, F., and J. Sjolte, 2018: A climatology of strong large-scale ocean evaporation events. Part II: Relevance for the deuterium excess signature of the evaporation flux. J. Climate, 31, 73137336, https://doi.org/10.1175/JCLI-D-17-0592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Appenzeller, C., T. F. Stocker, and M. Anklin, 1998: North Atlantic Oscillation dynamics recorded in Greenland ice cores. Science, 282, 446449, https://doi.org/10.1126/science.282.5388.446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baumgartner, A., and E. Reichel, 1975: World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff. Elsevier, 182 pp.

  • Bentamy, A., and Coauthors, 2017: Review and assessment of latent and sensible heat flux accuracy over the global oceans. Remote Sens. Environ., 201, 196218, https://doi.org/10.1016/j.rse.2017.08.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanton, J. O., J. A. Amft, D. K. Lee, and A. Riordan, 1989: Wind stress and heat fluxes observed during winter and spring 1986. J. Geophys. Res., 94, 10 68610 698, https://doi.org/10.1029/JC094iC08p10686.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and R. G. Fleagle, 1988: Prefrontal and postfrontal boundary layer processes over the ocean. Mon. Wea. Rev., 116, 12571273, https://doi.org/10.1175/1520-0493(1988)116<1257:PAPBLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bracegirdle, T. J., and E. W. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202208, https://doi.org/10.1111/j.1600-0870.2009.00431.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227242, https://doi.org/10.1175/1520-0469(1952)009<0227:TWAEBO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, S. K. Gulev, and C. Woods, 2017: Climatologically significant effects of some approximations in the bulk parameterizations of turbulent air–sea fluxes. J. Phys. Oceanogr., 47, 528, https://doi.org/10.1175/JPO-D-16-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, https://doi.org/10.1017/S1350482797000613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Pfahl, 2013: The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos., 118, 10 79110 801, https://doi.org/10.1002/jgrd.50852.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cau, P., J. Methven, and B. Hoskins, 2007: Origins of dry air in the tropics and subtropics. J. Climate, 20, 27452759, https://doi.org/10.1175/JCLI4176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craig, H., and L. Gordon, 1965: Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi, Ed., Laboratorio di Geologia Nucleare, 9–130.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., M. Balmaseda, G. Balsamo, R. Engelen, A. J. Simmons, and J.-N. Thpaut, 2014: Toward a consistent reanalysis of the climate system. Bull. Amer. Meteor. Soc., 95, 12351248, https://doi.org/10.1175/BAMS-D-13-00043.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A, 728748, https://doi.org/10.3402/tellusa.v51i5.14471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ECMWF, 2007: Integrated Forecasting System’s documentation, Part IV: Physical processes. IFS Documentation CY31R1, ECMWF, 155 pp.

  • Fasullo, J. T., and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, https://doi.org/10.1175/2007JCLI1936.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gat, J. R., B. Klein, Y. Kushnir, W. Roether, H. Wernli, R. Yam, and A. Shemesh, 2003: Isotope composition of air moisture over the Mediterranean Sea: An index of the air–sea interaction pattern. Tellus, 55B, 953965, https://doi.org/10.1034/j.1600-0889.2003.00081.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gimeno, L., and Coauthors, 2012: Oceanic and terrestrial sources of continental precipitation. Rev. Geophys., 50, RG4003, https://doi.org/10.1029/2012RG000389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giordani, H., and G. Caniaux, 2001: Sensitivity of cyclogenesis to sea surface temperature in the northwestern Atlantic. Mon. Wea. Rev., 129, 12731295, https://doi.org/10.1175/1520-0493(2001)129<1273:SOCTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grams, C. M., H. Binder, S. Pfahl, N. Piaget, and H. Wernli, 2014: Atmospheric processes triggering the central European floods in June 2013. Nat. Hazards Earth Syst. Sci., 14, 16911702, https://doi.org/10.5194/nhess-14-1691-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grist, J. P., S. A. Josey, Z. L. Jacobs, R. Marsh, B. Sinha, and E. Van Sebille, 2016: Extreme air–sea interaction over the North Atlantic subpolar gyre during the winter of 2013–2014 and its sub-surface legacy. Climate Dyn., 46, 40274045, https://doi.org/10.1007/s00382-015-2819-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of the United States. Mon. Wea. Rev., 118, 324342, https://doi.org/10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and K. P. Belyaev, 2012: Probability distribution characteristics for surface air–sea turbulent heat fluxes over the global ocean. J. Climate, 25, 184206, https://doi.org/10.1175/2011JCLI4211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harden, B. E., I. A. Renfrew, and G. N. Petersen, 2011: A climatology of wintertime barrier winds off southeast Greenland. J. Climate, 24, 47014717, https://doi.org/10.1175/2011JCLI4113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hausmann, U., A. Czaja, and J. Marshall, 2017: Mechanisms controlling the SST air–sea heat flux feedback and its dependence on spatial scale. Climate Dyn., 48, 12971307, https://doi.org/10.1007/s00382-016-3142-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horita, J., K. Rozanski, and S. Cohen, 2008: Isotope effects in the evaporation of water: A status report of the Craig–Gordon model. Isotopes Environ. Health Stud., 44, 2349, https://doi.org/10.1080/10256010801887174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnsen, S. J., W. Dansgaard, and J. W. C. White, 1989: The origin of Arctic precipitation under present and glacial conditions. Tellus, 41B, 452468, https://doi.org/10.1111/j.1600-0889.1989.tb00321.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joussaume, S., R. Sadourny, and C. Vignal, 1986: Origin of precipitating water in a numerical simulation of the July climate. Ocean–Air Interact., 1, 4356.

    • Search Google Scholar
    • Export Citation
  • Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197208, https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kohyama, T., and D. L. Hartmann, 2016: Antarctic sea ice response to weather and climate modes of variability. J. Climate, 29, 721741, https://doi.org/10.1175/JCLI-D-15-0301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., T. J. Bracegirdle, and I. A. Seierstad, 2009: Marine cold-air outbreaks in the North Atlantic: Temporal distribution and associations with large-scale atmospheric circulation. Climate Dyn., 33, 187197, https://doi.org/10.1007/s00382-008-0431-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R., J. Jouzel, R. Suozzo, G. Russell, W. Broecker, D. Rind, and P. Eagleson, 1986: Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys. Res. Lett., 13, 121124, https://doi.org/10.1029/GL013i002p00121.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostov, Y., J. Marshall, U. Hausmann, K. C. Armour, D. Ferreira, and M. M. Holland, 2017: Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dyn., 48, 15951609, https://doi.org/10.1007/s00382-016-3162-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurita, N., 2011: Origin of Arctic water vapor during the ice-growth season. Geophys. Res. Lett., 38, L02709, https://doi.org/10.1029/2010GL046064.

  • Kuwano-Yoshida, A., and S. Minobe, 2017: Storm-track response to SST fronts in the northwestern Pacific region in an AGCM. J. Climate, 30, 10811102, https://doi.org/10.1175/JCLI-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., M. Wensnahan, A. Schweiger, and J. Zhang, 2014: Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Climate, 27, 25882606, https://doi.org/10.1175/JCLI-D-13-00014.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lovenduski, N. S., and N. Gruber, 2005: Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett., 32, L11603, https://doi.org/10.1029/2005GL022727.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massacand, A. C., H. Wernli, and H. C. Davies, 1998: Heavy precipitation on the alpine southside: An upper-level precursor. Geophys. Res. Lett., 25, 14351438, https://doi.org/10.1029/98GL50869.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734752, https://doi.org/10.1175/JCLI-D-11-00202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and I. A. Renfrew, 2002: An assessment of the surface turbulent heat fluxes from the NCEP–NCAR reanalysis over western boundary currents. J. Climate, 15, 20202037, https://doi.org/10.1175/1520-0442(2002)015<2020:AAOTST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., and R. S. Pickart, 2012: Northern Bering Sea tip jets. Geophys. Res. Lett., 39, L08807, https://doi.org/10.1029/2012GL051537.

  • Noone, D., and I. Simmonds, 2002: Annular variations in moisture transport mechanisms and the abundance of O in Antarctic snow. J. Geophys. Res., 107, 4742, https://doi.org/10.1029/2002JD002262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., 2017: Synoptic environments and characteristics of cold air outbreaks in the Irminger Sea. Int. J. Climatol., 37, 193207, https://doi.org/10.1002/joc.4991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2015: Analysis of the slope of isentropic surfaces and its tendencies over the North Atlantic. Quart. J. Roy. Meteor. Soc., 141, 32263238, https://doi.org/10.1002/qj.2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., and T. Spengler, 2017: A Lagrangian climatology of wintertime cold air outbreaks in the Irminger and Nordic seas and their role in shaping air–sea heat fluxes. J. Climate, 31, 27172737, https://doi.org/10.1175/JCLI-D-16-0605.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, I. Rudeva, I. Simmonds, H. Sodemann, and H. Wernli, 2014: The role of extratropical cyclones and fronts for Southern Ocean freshwater fluxes. J. Climate, 27, 62056224, https://doi.org/10.1175/JCLI-D-13-00409.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, https://doi.org/10.1175/JCLI-D-14-00482.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parfitt, R., A. Czaja, and Y.-O. Kwon, 2017: The impact of SST resolution change in the ERA-Interim reanalysis on wintertime Gulf Stream frontal air-sea interaction. Geophys. Res. Lett., 44, 32463254, https://doi.org/10.1002/2017GL073028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., J. E. Hare, C. W. Fairall, and W. D. Otto, 2005: Air–sea interaction processes in warm and cold sectors of extratropical cyclonic storms observed during FASTEX. Quart. J. Roy. Meteor. Soc., 131, 877912, https://doi.org/10.1256/qj.03.181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A. B., H. A. Rashid, and I. Simmonds, 2012: Climate links and recent extremes in Antarctic sea ice high-latitude cyclones, southern annular mode and ENSO. Climate Dyn., 38, 5773, https://doi.org/10.1007/s00382-011-1044-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., R. B. Souza, P. C. Farias, O. Acevedo, and A. J. Miller, 2016: Air-sea interaction at the Southern Brazilian Continental Shelf: In situ observations. J. Geophys. Res. Oceans, 121, 66716695, https://doi.org/10.1002/2016JC011774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and N. Niedermann, 2011: Daily covariations in near-surface relative humidity and temperature over the ocean. J. Geophys. Res., 116, D19104, https://doi.org/10.1029/2011JD015792.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., and H. Wernli, 2012: Quantifying the relevance of cyclones for precipitation extremes. J. Climate, 25, 67706780, https://doi.org/10.1175/JCLI-D-11-00705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfahl, S., E. Madonna, M. Boettcher, H. Joos, and H. Wernli, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Climate, 27, 2740, https://doi.org/10.1175/JCLI-D-13-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. A., and J. Turner, 2003: Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge University Press, 628 pp.

    • Crossref
    • Export Citation
  • Raveh-Rubin, S., 2017: Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer. J. Climate, 30, 66616682, https://doi.org/10.1175/JCLI-D-16-0782.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reed, R. J., G. A. Grell, and Y.-H. Kuo, 1993: The ERICA IOP 5 storm. Part I: Analysis and simulation. Mon. Wea. Rev., 121, 15771594, https://doi.org/10.1175/1520-0493(1993)121<1577:TEISPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. W. K. Moore, P. S. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400, https://doi.org/10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., G. N. Petersen, D. J. Sproson, G. W. K. Moore, H. Adiwidjaja, S. Zhang, and R. North, 2009: A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Quart. J. Roy. Meteor. Soc., 135, 20462066, https://doi.org/10.1002/qj.444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouault, M., C. J. C. Reason, J. R. E. Lutjeharms, and A. C. M. Beljaars, 2003: Underestimation of latent and sensible heat fluxes above the Agulhas Current in NCEP and ECMWF analyses. J. Climate, 16, 776782, https://doi.org/10.1175/1520-0442(2003)016<0776:UOLASH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and S. K. Gulev, 2011: Composite analysis of North Atlantic extratropical cyclones in NCEP–NCAR reanalysis data. Mon. Wea. Rev., 139, 14191446, https://doi.org/10.1175/2010MWR3294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudeva, I., and I. Simmonds, 2015: Variability and trends of global atmospheric frontal activity and links with large-scale modes of variability. J. Climate, 28, 33113330, https://doi.org/10.1175/JCLI-D-14-00458.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S.-P. Xie, 2007: Mapping high sea winds from space: A global climatology. Bull. Amer. Meteor. Soc., 88, 19651978, https://doi.org/10.1175/BAMS-88-12-1965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schemm, S., I. Rudeva, and I. Simmonds, 2015: Extratropical fronts in the lower troposphere–global perspectives obtained from two automated methods. Quart. J. Roy. Meteor. Soc., 141, 16861698, https://doi.org/10.1002/qj.2471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., 1995: The ocean component of the global water cycle. Rev. Geophys., 33 (S2), 13951409, https://doi.org/10.1029/95RG00184.

  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656665, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., 2015: Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979-2013. Ann. Glaciol., 56 (69), 1828, https://doi.org/10.3189/2015AoG69A909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and M. Dix, 1989: The use of mean atmospheric parameters in the calculation of modeled mean surface heat fluxes over the world’s oceans. J. Phys. Oceanogr., 19, 205215, https://doi.org/10.1175/1520-0485(1989)019<0205:TUOMAP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and J. A. T. Bye, 2012: Identification and climatology of Southern Hemisphere mobile fronts in a modern reanalysis. J. Climate, 25, 19451962, https://doi.org/10.1175/JCLI-D-11-00100.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., K. M. Willett, P. D. Jones, P. W. Thorne, and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, https://doi.org/10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Sjolte, J., G. Hoffmann, S. J. Johnsen, B. M. Vinther, V. Masson-Delmotte, and C. Sturm, 2011: Modeling the water isotopes in Greenland precipitation 1959–2001 with the meso-scale model REMO-iso. J. Geophys. Res., 116, D18105, https://doi.org/10.1029/2010JD015287.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., and A. Stohl, 2009: Asymmetries in the moisture origin of Antarctic precipitation. Geophys. Res. Lett., 36, L22803, https://doi.org/10.1029/2009GL040242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., C. Schwierz, and H. Wernli, 2008a: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res., 113, D03107, https://doi.org/10.1029/2007JD008503.

    • Search Google Scholar
    • Export Citation
  • Sodemann, H., V. Masson-Delmotte, C. Schwierz, B. M. Vinther, and H. Wernli, 2008b: Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. J. Geophys. Res., 113, D12111, https://doi.org/10.1029/2007JD009416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sodemann, H., H. Wernli, and C. Schwierz, 2009: Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model. Quart. J. Roy. Meteor. Soc., 135, 205223, https://doi.org/10.1002/qj.374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool – version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Talley, L. D., 2008: Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog. Oceanogr., 78, 257303, https://doi.org/10.1016/j.pocean.2008.05.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443, https://doi.org/10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, and D. P. Stepaniak, 2001: The atmospheric energy budget and implications for surface fluxes and ocean heat transports. Climate Dyn., 17, 259276, https://doi.org/10.1007/PL00007927.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uotila, P., T. Vihma, A. B. Pezza, I. Simmonds, K. Keay, and A. H. Lynch, 2011: Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. J. Geophys. Res., 116, D07109, https://doi.org/10.1029/2008JD010209.

    • Search Google Scholar
    • Export Citation
  • Våge, K., T. Spengler, H. C. Davies, and R. S. Pickart, 2009: Multi-event analysis of the westerly Greenland tip jet based upon 45 winters in ERA-40. Quart. J. Roy. Meteor. Soc., 135, 19992011, https://doi.org/10.1002/qj.488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vannière, B., A. Czaja, H. Dacre, and T. Woollings, 2017: A “cold path” for the Gulf Stream–troposphere connection. J. Climate, 30, 13631379, https://doi.org/10.1175/JCLI-D-15-0749.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vinther, B. M., S. J. Johnsen, K. K. Andersen, H. B. Clausen, and A. W. Hansen, 2003: NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys. Res. Lett., 30, 1387, https://doi.org/10.1029/2002GL016193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, G. T., and E. W. Bliss, 1928: World weather IV: Some applications to seasonal foreshadowing. Mem. Roy. Meteor. Soc., 3, 8195.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wernli, H., and C. Schwierz, 2006: Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J. Atmos. Sci., 63, 24862507, https://doi.org/10.1175/JAS3766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, J. W. C., L. K. Barlow, D. Fisher, P. Grootes, J. Jouzel, S. J. Johnsen, M. Stuiver, and H. Clausen, 1997: The climate signal in the stable isotopes of snow from Summit, Greenland: Results of comparisons with modern climate observations. J. Geophys. Res., 102, 26 42526 439, https://doi.org/10.1029/97JC00162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winschall, A., S. Pfahl, H. Sodemann, and H. Wernli, 2012: Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Quart. J. Roy. Meteor. Soc., 138, 12451258, https://doi.org/10.1002/qj.987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, H., G. Lohmann, W. Wei, M. Dima, M. Ionita, and J. Liu, 2016: Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Oceans, 121, 49284945, https://doi.org/10.1002/2015JC011513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yau, M. K., and M. Jean, 1989: Synoptic aspects and physical processes in the rapidly intensifying cyclone of 6–8 March 1986. Atmos.–Ocean, 27, 5986, https://doi.org/10.1080/07055900.1989.9649328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20, 53765390, https://doi.org/10.1175/2007JCLI1714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., J. Patoux, and C. Li, 2009: Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes. J. Geophys. Res., 114, D04106, https://doi.org/10.1029/2008JD010874.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1368 679 453
PDF Downloads 733 179 25