Asymmetric Modulation of ENSO Teleconnections by the Interdecadal Pacific Oscillation

Bo Dong Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Bo Dong in
Current site
Google Scholar
PubMed
Close
,
Aiguo Dai Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Aiguo Dai in
Current site
Google Scholar
PubMed
Close
,
Mathias Vuille Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Mathias Vuille in
Current site
Google Scholar
PubMed
Close
, and
Oliver Elison Timm Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Oliver Elison Timm in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Remote influences of ENSO are known to vary with different phases of the interdecadal Pacific oscillation (IPO). Here, observational and reanalysis data from 1920 to 2014 are analyzed to present a global synthesis of the IPO’s modulation on ENSO teleconnections, followed by a modeling investigation. Regressions of surface air temperature T, precipitation P, and atmospheric circulations upon IPO and ENSO indices reveal substantial differences between ENSO and IPO teleconnections to regional T and P in terms of spatial pattern, magnitude, and seasonality. The IPO’s modulation on ENSO teleconnections asymmetrically varies with both IPO and ENSO phases. For a given ENSO phase, IPO’s modulations are not symmetric between its two phases; for a given IPO SST anomaly, its influence depends on whether it is superimposed on El Niño, La Niña, or neutral ENSO. The IPO modulations are linked to the atmospheric response to tropical SST anomalies, manifested in the local Hadley circulation and the local Walker circulation at low latitudes and the Rossby wave train in the extratropics, including the Pacific–North American (PNA) pattern in the Northern Hemisphere. A set of numerical experiments using CAM5 forced with different combinations of the IPO- and ENSO-related SSTs further shows that the asymmetric modulation arises from the nonlinear Clausius–Clapeyron relation, so that the atmospheric circulation response to the same IPO-induced SST departure is larger during a warm rather than a cold ENSO phase, and the response to a warm IPO state is larger than that to a cold IPO state. The asymmetry depends primarily on the tropical Pacific mean state and tropical SST anomalies and secondarily on extratropical SST anomalies.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Aiguo Dai, adai@albany.edu

Abstract

Remote influences of ENSO are known to vary with different phases of the interdecadal Pacific oscillation (IPO). Here, observational and reanalysis data from 1920 to 2014 are analyzed to present a global synthesis of the IPO’s modulation on ENSO teleconnections, followed by a modeling investigation. Regressions of surface air temperature T, precipitation P, and atmospheric circulations upon IPO and ENSO indices reveal substantial differences between ENSO and IPO teleconnections to regional T and P in terms of spatial pattern, magnitude, and seasonality. The IPO’s modulation on ENSO teleconnections asymmetrically varies with both IPO and ENSO phases. For a given ENSO phase, IPO’s modulations are not symmetric between its two phases; for a given IPO SST anomaly, its influence depends on whether it is superimposed on El Niño, La Niña, or neutral ENSO. The IPO modulations are linked to the atmospheric response to tropical SST anomalies, manifested in the local Hadley circulation and the local Walker circulation at low latitudes and the Rossby wave train in the extratropics, including the Pacific–North American (PNA) pattern in the Northern Hemisphere. A set of numerical experiments using CAM5 forced with different combinations of the IPO- and ENSO-related SSTs further shows that the asymmetric modulation arises from the nonlinear Clausius–Clapeyron relation, so that the atmospheric circulation response to the same IPO-induced SST departure is larger during a warm rather than a cold ENSO phase, and the response to a warm IPO state is larger than that to a cold IPO state. The asymmetry depends primarily on the tropical Pacific mean state and tropical SST anomalies and secondarily on extratropical SST anomalies.

Current affiliation: Department of Meteorology, University of Reading, Reading, United Kingdom.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Aiguo Dai, adai@albany.edu
Save
  • Alexander, M. A., K. Halimeda Kilbourne, and J. A. Nye, 2014: Climate variability during warm and cold phases of the Atlantic multidecadal oscillation (AMO) 1871–2008. J. Mar. Syst., 133, 1426, https://doi.org/10.1016/j.jmarsys.2013.07.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arblaster, J. M., G. A. Meehl, and A. M. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18, 519531, https://doi.org/10.1007/s00382-001-0191-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bice, D., A. Montanari, V. Vučetić, andM. Vučetić, 2012: The influence of regional and global climatic oscillations on Croatian climate. Int. J. Climatol., 32, 15371557, https://doi.org/10.1002/joc.2372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J. Y., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part II: Pacific pan-decadal variability. J. Climate, 21, 26342650, https://doi.org/10.1175/2007JCLI2012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, W., J. Feng, and R. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622635, https://doi.org/10.1175/JCLI-D-12-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung C. T. Y., S. B. Power, J. M. Arblaster, H. A. Rashid, and G. L. Roff, 2014: Nonlinear precipitation response to El Niño and global warming in the Indo-Pacific. Climate Dyn., 42, 18371856, https://doi.org/10.1007/s00382-013-1892-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, and J. Jones, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dai, A., 2013: The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Climate Dyn., 41, 633646, https://doi.org/10.1007/s00382-012-1446-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., and T. M. L. Wigley, 2000: Global patterns of ENSO-induced precipitation. Geophys. Res. Lett., 27, 12831286, https://doi.org/10.1029/1999GL011140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S.-P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, https://doi.org/10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Silva, G. A. M., A. Drumond, and T. Ambrizzi, 2011: The impact of El Niño on South American summer climate during different phases of the Pacific decadal oscillation. Theor. Appl. Climatol., 106, 307319, https://doi.org/10.1007/s00704-011-0427-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., and M. L. Blackmon, 1993: Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate, 6, 17431753, https://doi.org/10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific interdecadal climate variability: Linkages between the tropics and the North Pacific during boreal winter since 1900. J. Climate, 17, 31093124, https://doi.org/10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2015: The influence of the interdecadal Pacific oscillation on temperature and precipitation over the globe. Climate Dyn., 45, 26672681, https://doi.org/10.1007/s00382-015-2500-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, B., and A. Dai, 2017: The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010. Climate Dyn., 49, 279296, https://doi.org/10.1007/s00382-016-3342-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, A. Dai, F. Song, B. Wu, and X. Chen, 2016: The footprint of the inter-decadal Pacific oscillation in Indian Ocean sea surface temperatures. Sci. Rep., 6, 21251, https://doi.org/10.1038/srep21251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frauen, C., D. Dommenget, N. Tyrrell, M. Rezny, and S. Wales, 2014: Analysis of the nonlinearity of El Niño–Southern Oscillation teleconnections. J. Climate, 27, 62256244, https://doi.org/10.1175/JCLI-D-13-00757.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, https://doi.org/10.1016/j.palaeo.2007.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gershunov, A., and T. P. Barnett, 1998: Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc., 79, 27152725, https://doi.org/10.1175/1520-0477(1998)079<2715:IMOET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, G. B., 2007: Influence of the Pacific decadal oscillation on winter precipitation and drought during years of neutral ENSO in the western United States. Wea. Forecasting, 22, 116124, https://doi.org/10.1175/WAF983.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodrich, G. B., and J. M. Walker, 2011: The influence of the PDO on winter precipitation during high- and low-index ENSO conditions in the eastern United States. Phys. Geogr., 32, 295312, https://doi.org/10.2747/0272-3646.32.4.295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, B., and G. Wendler, 2005: The significance of the 1976 Pacific climate shift in the climatology of Alaska. J. Climate, 18, 48244839, https://doi.org/10.1175/JCLI3532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Niño, La Niña, and the nonlinearity of their teleconnections. J. Climate, 10, 17691786, https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Guojun, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott, 2015: CICE: The Los Alamos Sea Ice Model documentation and software user's manual, version 5.1. Tech Doc. LA-CC-06-012, 116 pp., http://oceans11.lanl.gov/svn/CICE/tags/release-5.1.2/doc/cicedoc.pdf.

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676679, https://doi.org/10.1126/science.269.5224.676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, L., and V. Krishnamurthy, 2014: Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Climate Dyn., 42, 23972410, https://doi.org/10.1007/s00382-013-1856-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, R., and M. Sugi, 2003: Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dyn., 21, 233242, https://doi.org/10.1007/s00382-003-0330-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-Il An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwon, M., S.-W. Yeh, Y.-G. Park, and Y.-K. Lee, 2013: Changes in the linear relationship of ENSO–PDO under the global warming. Int. J. Climatol., 33, 11211128, https://doi.org/10.1002/joc.3497.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, W. Yuan, H. Chen, W. Sun, and Y. Zhang, 2015: Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J. Adv. Model. Earth Syst., 7, 774790, https://doi.org/10.1002/2014MS000414.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Z. Y., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 19631995, https://doi.org/10.1175/2011JCLI3980.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López-Parages, J., B. Rodríguez-Fonseca, and L. Terray, 2015: A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Climate Dyn., 45, 867880, https://doi.org/10.1007/s00382-014-2319-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Yao, A. Dai, I. Simmonds, and C. L. E. Franzke, 2016a: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 39253947, https://doi.org/10.1175/JCLI-D-15-0611.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Xiao, Y. Diao, A. Dai, C. L. E. Franzke, and I. Simmonds, 2016b: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 39493971, https://doi.org/10.1175/JCLI-D-15-0612.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Yao, A. Dai, I. Simmonds, and L. Zhong, 2017a: Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part II: A theoretical explanation. J. Climate, 30, 35693587, https://doi.org/10.1175/JCLI-D-16-0262.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, D., Y. Chen, A. Dai, M. Mu, R. Zhang, and I. Simmonds, 2017b: Winter Eurasian cooling linked with the Atlantic multidecadal oscillation. Environ. Res. Lett., 12, 125002, https://doi.org/10.1088/1748-9326/aa8de8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: The Pacific–South American modes and tropical convection during the Southern Hemisphere winter. Mon. Wea. Rev., 126, 15811596, https://doi.org/10.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and J. N. Paegle, 2001: The Pacific–South American modes and their downstream effects. Int. J. Climatol., 21, 12111229, https://doi.org/10.1002/joc.685.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp., http://www.cesm.ucar.edu/models/cesm1.1/cam/docs/description/cam5_desc.pdf.

  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2013: Technical Description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 42o pp., https://doi.org/10.5065/D6RR1W7M.

    • Crossref
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, https://doi.org/10.1029/2007JD008411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot re-analysis of the 20th-century assimilating surface observations only (ERA-20C). ERA Rep. Series 14, 62 pp.

  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y., and Coauthors, 2015: Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. J. Adv. Model. Earth Syst., 7, 382411, https://doi.org/10.1002/2014MS000354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwendike, J., P. Govekar, M. J. Reeder, R. Wardle, G. J. Berry, and C. Jakob, 2014: Local partitioning of the overturning circulation in the tropics and the connection to the Hadley and Walker circulations. J. Geophys. Res. Atmos., 119, 13221339, https://doi.org/10.1002/2013JD020742.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, 4065, https://doi.org/10.1029/2000JD000298.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vertenstein, M., A. Bertini, T. Craig, J. Edwards, M. Levy, A. Mai, and J. Schollenberger, 2013: CESM user’s guide (CESM1.2 release series user’s guide). NCAR Tech. Note, 100 pp., http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/ug.pdf.

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westra, S., B. Renard, and M. Thyer, 2015: The ENSO–precipitation teleconnection and its modulation by the interdecadal Pacific oscillation. J. Climate, 28, 47534773, https://doi.org/10.1175/JCLI-D-14-00722.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Whitfield, P. H., R. D. Moore, S. W. Fleming, and A. Zawadzki, 2010: Pacific decadal oscillation and the hydroclimatology of western Canada—Review and prospects. Can. Water Resour. J., 35, 128, https://doi.org/10.4296/cwrj3501001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, W., R. Yu, M. Zhang, W. Lin, J. Li, and Y. Fu, 2013: Diurnal cycle of summer precipitation over subtropical East Asia in CAM5. J. Climate, 26, 31593172, https://doi.org/10.1175/JCLI-D-12-00119.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1415 486 32
PDF Downloads 1069 249 13