Multitechnique Assessment of the Interannual to Multidecadal Variability in Steric Sea Levels: A Comparative Analysis of Climate Mode Fingerprints

Julia Pfeffer Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Julia Pfeffer in
Current site
Google Scholar
PubMed
Close
,
Paul Tregoning Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Paul Tregoning in
Current site
Google Scholar
PubMed
Close
,
Anthony Purcell Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Anthony Purcell in
Current site
Google Scholar
PubMed
Close
, and
Malcolm Sambridge Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

Search for other papers by Malcolm Sambridge in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Because of increased emissions of greenhouse gases oceans are warming, causing sea level to rise as the density of seawater falls. Predicting the rates of steric expansion is challenging because of the natural variability of the ocean and because observations are insufficient to adequately cover the ocean basins. Here, we investigate the ability of one ocean reanalysis, two objective analyses, and one combination of satellite geodetic measurements to accommodate data gaps and to reconstruct typical patterns of the steric sea level variability at interannual and multidecadal time scales. Six climate indices are used to identify robust features of the internal variability, using a Least Absolute Shrinkage and Selection Operator (LASSO) regression to select significant predictors of the steric variability. Spatially consistent fingerprints are revealed for all climate indices in the ocean reanalysis dataset, allowing the recovery of most of the steric variability observed in the tropical and North Pacific, as well as large fractions of the Atlantic and Indian Ocean signals. Robust climate mode fingerprints are also identified with high spatial resolution but limited temporal coverage in the geodetic observations. The objective analyses fail to detect many of the patterns expected from climate modes, especially before the Argo era. Climate indices constitute valuable yet underexploited tools to assess the performance of different techniques to reconstruct steric sea levels at interannual and multidecadal scales. Such progress will increase confidence in the historical reconstructions of steric sea levels, which is necessary to improve the closure of regional and global sea level budgets and to validate the predictions of climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0679.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julia Pfeffer, julia.pfeffer@anu.edu.au

Abstract

Because of increased emissions of greenhouse gases oceans are warming, causing sea level to rise as the density of seawater falls. Predicting the rates of steric expansion is challenging because of the natural variability of the ocean and because observations are insufficient to adequately cover the ocean basins. Here, we investigate the ability of one ocean reanalysis, two objective analyses, and one combination of satellite geodetic measurements to accommodate data gaps and to reconstruct typical patterns of the steric sea level variability at interannual and multidecadal time scales. Six climate indices are used to identify robust features of the internal variability, using a Least Absolute Shrinkage and Selection Operator (LASSO) regression to select significant predictors of the steric variability. Spatially consistent fingerprints are revealed for all climate indices in the ocean reanalysis dataset, allowing the recovery of most of the steric variability observed in the tropical and North Pacific, as well as large fractions of the Atlantic and Indian Ocean signals. Robust climate mode fingerprints are also identified with high spatial resolution but limited temporal coverage in the geodetic observations. The objective analyses fail to detect many of the patterns expected from climate modes, especially before the Argo era. Climate indices constitute valuable yet underexploited tools to assess the performance of different techniques to reconstruct steric sea levels at interannual and multidecadal scales. Such progress will increase confidence in the historical reconstructions of steric sea levels, which is necessary to improve the closure of regional and global sea level budgets and to validate the predictions of climate models.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0679.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Julia Pfeffer, julia.pfeffer@anu.edu.au

Supplementary Materials

    • Supplemental Materials (PDF 33.44 MB)
Save
  • A, G., J. Wahr, and S. Zhong, 2013: Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int., 192, 557572, https://doi.org/10.1093/gji/ggs030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abraham, J. P., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450483, https://doi.org/10.1002/rog.20022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Antonov, J. I., S. Levitus, and T. P. Boyer, 2002: Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107, 8013, https://doi.org/10.1029/2001JC000964.

    • Search Google Scholar
    • Export Citation
  • Arlot, S., and A. Celisse, 2010: A survey of cross-validation procedures for model selection. Stat. Surv., 4, 4079, https://doi.org/10.1214/09-SS054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashok, K., Z. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 4156, https://doi.org/10.2151/jmsj.81.41.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, https://doi.org/10.1002/qj.2063.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., and Coauthors, 2015: The Ocean Reanalyses Intercomparison Project (ORA-IP). J. Oper. Oceanogr., 8 (Suppl.), s80s97, https://doi.org/10.1080/1755876X.2015.1022329.

    • Search Google Scholar
    • Export Citation
  • Bos, M. S., S. D. P. Williams, I. B. Araújo, and L. Bastos, 2014: The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys. J. Int., 196, 14231430, https://doi.org/10.1093/gji/ggt481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyer, T., S. Levitus, H. Garcia, R. A. Locarnini, C. Stephens, and J. Antonov, 2005: Objective analyses of annual, seasonal, and monthly temperature and salinity for the World Ocean on a 0.25° grid. Int. J. Climatol., 25, 931945, https://doi.org/10.1002/joc.1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cabanes, C., and Coauthors, 2013: The CORA dataset: Validation and diagnostics of in-situ ocean temperature and salinity measurements. Ocean Sci., 9, 118, https://doi.org/10.5194/os-9-1-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Calafat, F. M., D. P. Chambers, and M. N. Tsimplis, 2012: Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J. Geophys. Res., 117, C09022, https://doi.org/10.1029/2012JC008285.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cazenave, A., and W. Llovel, 2010: Contemporary sea level rise. Annu. Rev. Mar. Sci., 2, 145173, https://doi.org/10.1146/annurev-marine-120308-081105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chambers, D. P., 2006: Observing seasonal steric sea level variations with GRACE and satellite altimetry. J. Geophys. Res., 111, C03010, https://doi.org/10.1029/2005JC002914.

    • Search Google Scholar
    • Export Citation
  • Cheung, A. H., M. E. Mann, B. A. Steinman, L. M. Frankcombe, M. H. England, and S. K. Miller, 2017: Comparison of low-frequency internal climate variability in CMIP5 models and observations. J. Climate, 30, 47634776, https://doi.org/10.1175/JCLI-D-16-0712.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2010: Ocean temperature and salinity contributions to global and regional sea-level change. Understanding Sea-Level Rise and Variability, J. A. Church et al., Eds., Blackwell Publishing, 143–176.

    • Crossref
    • Export Citation
  • Church, J. A., and Coauthors, 2013a: Sea level change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1137–1216, http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter13_FINAL.pdf.

  • Church, J. A., D. Monselesan, J. M. Gregory, and B. Marzeion, 2013b: Evaluating the ability of process based models to project sea-level change. Environ. Res. Lett., 8, 014051, https://doi.org/10.1088/1748-9326/8/1/014051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., and Coauthors, 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35, L08607, https://doi.org/10.1029/2007GL032838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901093, https://doi.org/10.1038/nature07080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankcombe, L. M., S. McGregor, and M. H. England, 2015: Robustness of the modes of Indo-Pacific sea level variability. Climate Dyn., 45, 12811298, https://doi.org/10.1007/s00382-014-2377-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and F. Reseghetti, 2010: On depth and temperature biases in bathythermograph data: Development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Res. I, 57, 812833, https://doi.org/10.1016/j.dsr.2010.03.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2013a: Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion. Geophys. Res. Lett., 40, 16001604, https://doi.org/10.1002/grl.50339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., and Coauthors, 2013b: Twentieth-century global-mean sea level rise: Is the whole greater than the sum of the parts? J. Climate, 26, 44764499, https://doi.org/10.1175/JCLI-D-12-00319.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamlington, B. D., R. R. Leben, and K.-Y. Kim, 2012: Improving sea level reconstructions using non-sea level measurements. J. Geophys. Res., 117, C10025, https://doi.org/10.1029/2012JC008277.

    • Search Google Scholar
    • Export Citation
  • Hammami, D., T. S. Lee, T. B. M. J. Ouarda, and J. Lee, 2012: Predictor selection for downscaling GCM data with LASSO. J. Geophys. Res., 117, D17116, https://doi.org/10.1029/2012JD017864.

    • Search Google Scholar
    • Export Citation
  • Hamon, M., G. Reverdin, and P.-Y. Le Traon, 2012: Empirical correction of XBT data. J. Atmos. Oceanic Technol., 29, 960973, https://doi.org/10.1175/JTECH-D-11-00129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, D. Stammer, A. Hu, B. Hamlington, J. Kenigson, H. Palanisamy, and P. Thompson, 2017: Spatial patterns of sea level variability associated with natural internal climate modes. Surv. Geophys., 38, 217250, https://doi.org/10.1007/s10712-016-9386-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and M. Wainwright, 2015: Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall/CRC, 351 pp.

  • Hay, C. C., E. Morrow, R. E. Kopp, and J. X. Mitrovica, 2015: Probabilistic reanalysis of twentieth-century sea-level rise. Nature, 517, 481484, https://doi.org/10.1038/nature14093.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hebiri, M., and J. Lederer, 2013: How correlations influence LASSO prediction. IEEE Trans. Inf. Theory, 59, 18461854, https://doi.org/10.1109/TIT.2012.2227680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., M. Kimoto, K. Sakamoto, and S.-I. Iwasaki, 2006: Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanogr., 62, 155170, https://doi.org/10.1007/s10872-006-0041-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011a: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J. Geophys. Res., 116, D14103, https://doi.org/10.1029/2010JD015218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011b: Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res., 116, D14104, https://doi.org/10.1029/2010JD015220.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia, and R. A. Locarnini, 2005a: EOF analysis of upper ocean heat content, 1956–2003. Geophys. Res. Lett., 32, L18607, https://doi.org/10.1029/2005GL023606.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia, and R. A. Locarnini, 2005b: Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the World Ocean, (1955–1959)–(1994–1998). Geophys. Res. Lett., 32, L16601, https://doi.org/10.1029/2005GL023761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.

    • Search Google Scholar
    • Export Citation
  • Ljung, G. M., and G. E. P. Box, 1978: On a measure of lack of fit in time series models. Biometrika, 65, 297303, https://doi.org/10.1093/biomet/65.2.297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., J. K. Willis, F. W. Landerer, and I. Fukumori, 2014: Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nat. Climate Change, 4, 10311035, https://doi.org/10.1038/nclimate2387.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013: Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp.

  • Lombard, A., A. Cazenave, P.-Y. Le Traon, and M. Ishii, 2005: Contribution of thermal expansion to present-day sea-level change revisited. Global Planet. Change, 47, 116, https://doi.org/10.1016/j.gloplacha.2004.11.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luthcke, S. B., T. J. Sabaka, B. D. Loomis, A. A. Arendt, J. J. McCarthy, and J. Camp, 2013: Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol., 59, 613631, https://doi.org/10.3189/2013JoG12J147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO reference manual, ocean dynamic component: NEMO-OPA. Institut Pierre Simon Laplace Note du Pôle de Modélisation Tech. Rep. 27, 386 pp.

  • Mantua, N. J., and S. R. Hare, 2002: The Pacific decadal oscillation. J. Oceanogr., 58, 3544, https://doi.org/10.1023/A:1015820616384.

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. M. Barker, 2011: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG127, 28 pp.

  • Meyssignac, B., and A. Cazenave, 2012: Sea level: A review of present-day and recent-past changes and variability. J. Geodyn., 58, 96109, https://doi.org/10.1016/j.jog.2012.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyssignac, B., D. Salas y Melia, M. Becker, W. Llovel, and A. Cazenave, 2012: Tropical Pacific spatial trend patterns in observed sea level: Internal variability and/or anthropogenic signature? Climate Past, 8, 787802, https://doi.org/10.5194/cp-8-787-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Millero, F. J., 2010: History of the equation of state of seawater. Oceanography, 23 (3), 1833, https://doi.org/10.5670/oceanog.2010.21.

  • Newman, M., and Coauthors, 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 43994427, https://doi.org/10.1175/JCLI-D-15-0508.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, A. S. Unnikrishnan, and H. Dayan, 2013: Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Climate Dyn., 41, 381402, https://doi.org/10.1007/s00382-012-1463-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, T. Izumo, A. S. Unnikrishnan, and C. Cassou, 2017: Influence of ENSO on the Pacific decadal oscillation in CMIP models. Climate Dyn., 49, 33093326, https://doi.org/10.1007/s00382-016-3514-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palanisamy, H., A. Cazenave, T. Delcroix, and B. Meyssignac, 2015: Spatial trend patterns in the Pacific Ocean sea level during the altimetry era: The contribution of thermocline depth change and internal climate variability. Ocean Dyn., 65, 341356, https://doi.org/10.1007/s10236-014-0805-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pfeffer, J., and P. Allemand, 2016: The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. Earth Planet. Sci. Lett., 439, 3947, https://doi.org/10.1016/j.epsl.2016.01.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piecuch, C. G., and R. M. Ponte, 2011: Mechanisms of interannual steric sea level variability. Geophys. Res. Lett., 38, L15605, https://doi.org/10.1029/2011GL048440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Purkey, S. G., G. C. Johnson, and D. P. Chambers, 2014: Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013. J. Geophys. Res. Oceans, 119, 75097522, https://doi.org/10.1002/2014JC010180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, https://doi.org/10.1126/science.222.4629.1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, R. D., 1998: Spectral analysis of highly aliased sea-level signals. J. Geophys. Res., 103, 24 99125 003, https://doi.org/10.1029/98JC02545.

  • Roberts, C. D., D. Calvert, N. Dunstone, L. Hermanson, M. D. Palmer, and D. Smith, 2016: On the drivers and predictability of seasonal-to-interannual variations in regional sea level. J. Climate, 29, 75657585, https://doi.org/10.1175/JCLI-D-15-0886.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., and Coauthors, 2009: The Argo Program: Observing the global ocean with profiling floats. Oceanography, 22 (2), 3443, https://doi.org/10.5670/oceanog.2009.36.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151169, https://doi.org/10.3354/cr025151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 73377356, https://doi.org/10.1029/1999JD901105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J. Geophys. Res., 102, 20 98721 009, https://doi.org/10.1029/97JC01475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci., 5, 2146, https://doi.org/10.1146/annurev-marine-121211-172406.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Storto, A., and Coauthors, 2017: Steric sea level variability (1993–2010) in an ensemble of ocean reanalyses and objective analyses. Climate Dyn., 49, 709729, https://doi.org/10.1007/s00382-015-2554-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tibshirani, R., 1996: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc., 58B, 267288.

  • Toiviainen, P., V. Alluri, E. Brattico, M. Wallentin, and P. Vuust, 2014: Capturing the musical brain with LASSO: Dynamic decoding of musical features from fMRI data. NeuroImage, 88, 170180, https://doi.org/10.1016/j.neuroimage.2013.11.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, https://doi.org/10.1256/qj.04.176.

  • Usai, M. G., M. E. Goddard, and B. J. Hayes, 2009: LASSO with cross-validation for genomic selection. Genet. Res., 91, 427436, https://doi.org/10.1017/S0016672309990334.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., S.-K. Lee, F. W. Landerer, and R. Lumpkin, 2017: Decade-long deep-ocean warming detected in the subtropical South Pacific. Geophys. Res. Lett., 44, 927936, https://doi.org/10.1002/2016GL071661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wahr, J., R. S. Nerem, and S. V. Bettadpur, 2015: The pole tide and its effect on GRACE time-variable gravity measurements: Implications for estimates of surface mass variations. J. Geophys. Res. Solid Earth, 120, 45974615, https://doi.org/10.1002/2015JB011986.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, N. J., and Coauthors, 2014: Australian sea levels—Trends, regional variability and influencing factors. Earth-Sci. Rev., 136, 155174, https://doi.org/10.1016/j.earscirev.2014.05.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., 1987: The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Climate Appl. Meteor., 26, 540558, https://doi.org/10.1175/1520-0450(1987)026<0540:TSOISC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolter, K., and M. S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal component index. Proc. 17th Climate Diagnostics Workshop, Norman, OK, NOAA/NMC/CAC, 5257.

  • Wolter, K., and M. S. Timlin, 2011: El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 10741087, https://doi.org/10.1002/joc.2336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, C., S. Masina, and A. Storto, 2017: Historical ocean reanalyses (1900–2010) using different data assimilation strategies. Quart. J. Roy. Meteor. Soc., 143, 479493, https://doi.org/10.1002/qj.2936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, https://doi.org/10.1029/2006GL028571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., and J. A. Church, 2012: Sea level trends, interannual and decadal variability in the Pacific Ocean. Geophys. Res. Lett., 39, L21701, https://doi.org/10.1029/2012GL053240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zweng, M., and Coauthors, 2013: Salinity. Vol. 2, World Ocean Atlas 2013, NOAA Atlas NESDIS 74, 49 pp.

    • Crossref
    • Export Citation