Interannual Variation of the Spring and Summer Precipitation over the Three River Source Region in China and the Associated Regimes

Bo Sun Key Laboratory of Meteorological Disaster, Ministry of Education, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Bo Sun in
Current site
Google Scholar
PubMed
Close
and
Huijun Wang Key Laboratory of Meteorological Disaster, Ministry of Education, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Huijun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study analyzes the interannual and interdecadal variability of spring and summer precipitation over the Three River Source (TRS) region in China using four datasets. A general consistency is revealed among the four datasets with regard to the interannual and interdecadal variability of TRS precipitation during 1979–2015, demonstrating a confidence of the four datasets in representing the precipitation variability over the TRS region. The TRS spring and summer precipitation shows distinct interannual and interdecadal variability, with an overall increasing trend in the spring precipitation and an interdecadal oscillation in the summer precipitation. The regimes associated with the interannual variability of TRS spring and summer precipitation are further investigated. The interannual variability of TRS spring precipitation is essentially modulated by an anomalous easterly water vapor transport (WVT) branch associated with the leading mode of Eurasian spring circulation. El Niño–Southern Oscillation (ENSO) may affect the interannual variability of TRS spring precipitation by causing southerly WVT anomalies toward the TRS region. The interannual variability of TRS summer precipitation is essentially modulated by an anomalous southwesterly WVT branch over the TRS region, which is mainly associated with a Eurasian wave train connected with the summer North Atlantic Oscillation. A strong East Asian summer monsoon and an El Niño–decaying summer may also contribute to the southwesterly WVT anomalies over the TRS region.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn

Abstract

This study analyzes the interannual and interdecadal variability of spring and summer precipitation over the Three River Source (TRS) region in China using four datasets. A general consistency is revealed among the four datasets with regard to the interannual and interdecadal variability of TRS precipitation during 1979–2015, demonstrating a confidence of the four datasets in representing the precipitation variability over the TRS region. The TRS spring and summer precipitation shows distinct interannual and interdecadal variability, with an overall increasing trend in the spring precipitation and an interdecadal oscillation in the summer precipitation. The regimes associated with the interannual variability of TRS spring and summer precipitation are further investigated. The interannual variability of TRS spring precipitation is essentially modulated by an anomalous easterly water vapor transport (WVT) branch associated with the leading mode of Eurasian spring circulation. El Niño–Southern Oscillation (ENSO) may affect the interannual variability of TRS spring precipitation by causing southerly WVT anomalies toward the TRS region. The interannual variability of TRS summer precipitation is essentially modulated by an anomalous southwesterly WVT branch over the TRS region, which is mainly associated with a Eurasian wave train connected with the summer North Atlantic Oscillation. A strong East Asian summer monsoon and an El Niño–decaying summer may also contribute to the southwesterly WVT anomalies over the TRS region.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bo Sun, sunb@nuist.edu.cn
Save
  • Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, R. D., and D. A. Robinson, 2011: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere, 5, 219229, https://doi.org/10.5194/tc-5-219-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and M. B. Parlange, 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396, 30, https://doi.org/10.1038/23845.

  • Chang, C. P., Y. Zhang, and T. Li, 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., Y. Sun, Z. Wang, Y. Zhu, and Y. Song, 2009: Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes. Int. J. Climatol., 29, 19261944, https://doi.org/10.1002/joc.1759.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., L. Wang, and W. Chen, 2014: How does the East Asian summer monsoon behave in the decaying phase of El Niño during different PDO phases? J. Climate, 27, 26822698, https://doi.org/10.1175/JCLI-D-13-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., 2017: Shift of the principal mode of Pan-Asian monsoon summer precipitation in terms of spatial pattern. Atmos. Oceanic Sci. Lett., 10, 221227, https://doi.org/10.1080/16742834.2017.1294460.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., H. Wang, and S. Li, 2013: Influences of the Atlantic Ocean on the summer precipitation of the southeastern Tibetan Plateau. J. Geophys. Res. Atmos., 118, 35343544, https://doi.org/10.1002/jgrd.50290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, T., S. He, X. Hao, and H. Wang, 2018: Recent interdecadal shift in the relationship between northeast China’s winter precipitation and the North Atlantic and Indian Oceans. Climate Dyn., 50, 14131424, https://doi.org/10.1007/s00382-017-3694-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., F. Li, J. Sun, H. Wang, and S. He, 2016: Assessment of the response of the East Asian winter monsoon to ENSO-like SSTAs in three U.S. CLIVAR Project models. Int. J. Climatol., 36, 847866, https://doi.org/10.1002/joc.4388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I., P. D. Jones, T. J. Osborn, and D. H. Lister, 2014: Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. Int. J. Climatol., 34, 623642, https://doi.org/10.1002/joc.3711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, S., and H. Wang, 2013: Oscillating relationship between the East Asian winter monsoon and ENSO. J. Climate, 26, 98199838, https://doi.org/10.1175/JCLI-D-13-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A triple index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, https://doi.org/10.1016/j.jhydrol.2005.07.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and C. Deser, 2010: North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst., 79, 231244, https://doi.org/10.1016/j.jmarsys.2009.11.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35, https://doi.org/10.1029/134GM01.

    • Crossref
    • Export Citation
  • Kang, S., Y. Xu, Q. You, W.-A. Flugel, N. Pepin, and T. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, https://doi.org/10.1088/1748-9326/5/1/015101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., S. Yang, Z. Wang, X. Zhu, and H. Tang, 2010: Evidence of warming and wetting climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res., 42, 449457, https://doi.org/10.1657/1938-4246-42.4.449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, S., D. Li, P. Zhao, and G. Zhang, 2009: The climatic characteristics of vapor transportation in rainy season of the origin area of three rivers in Qinghai-Xizang Plateau (in Chinese). Acta Meteor. Sin., 67, 591598.

    • Search Google Scholar
    • Export Citation
  • Liang, L., L. Li, C. M. Liu, and L. Cuo, 2013: Climate change in the Tibetan Plateau Three Rivers Source region: 1960–2009. Int. J. Climatol., 33, 29002916, https://doi.org/10.1002/joc.3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climate warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, https://doi.org/10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X., and Z.-Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 28962909, https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R., B. Dong, and H. Ding, 2006: Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys. Res. Lett., 33, L24701, https://doi.org/10.1029/2006GL027655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, F.-F., S. Li, and T. Furevik, 2018: Weaker connection between the Atlantic multidecadal oscillation and Indian summer rainfall since the mid-1990s. Atmos. Oceanic Sci. Lett., 11, 3743, https://doi.org/10.1080/16742834.2018.1394779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2542, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D., C. Folland, A. Scaife, J. Knight, A. Colman, P. Baines, and B. Dong, 2007: Decadal to multidecadal variability and the climate change background. J. Geophys. Res., 112, D18115, https://doi.org/10.1029/2007JD008411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO response to the North Atlantic SST tripole. J. Climate, 16, 19872004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, T., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, S., Y. Fu, and F. F. Pan, 2010: Climate change tendency and grassland vegetation response during the growth season in Three-River Source region. Sci China: Earth Sci., 53, 15061512, https://doi.org/10.1007/s11430-010-4064-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., D. P. Rowell, and C. K. Folland, 1999: Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320232, https://doi.org/10.1038/18648.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., 2017: Seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring and the associated surface heat budget. Atmos. Oceanic Sci. Lett., 10, 191197, https://doi.org/10.1080/16742834.2017.1286226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 24572474, https://doi.org/10.1175/JCLI-D-13-00517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., and H. Wang, 2015: Inter-decadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport. Climate Dyn., 44, 27032722, https://doi.org/10.1007/s00382-014-2251-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., Y. Zhu, and H. Wang, 2011: The recent interdecadal and interannual variation of water vapor transport over eastern China. Adv. Atmos. Sci., 28, 10391048, https://doi.org/10.1007/s00376-010-0093-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res., 117, D08110, https://doi.org/10.1029/2012JD017482.

    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., W.-T. Kwon, H.-J. Baek, K.-O. Boo, G.-H. Lim, and J.-S. Kug, 2006: A possible impact of the North Atlantic Oscillation on the East Asian summer monsoon precipitation. Geophys. Res. Lett., 33, L21713, https://doi.org/10.1029/2006GL027253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tong, K., F. Su, D. Yang, L. Zhang, and Z. Hao, 2014: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265285, https://doi.org/10.1002/joc.3682.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. Wu, and X. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2001: The weakening of the Asian monsoon circulation after the end of 1970’s. Adv. Atmos. Sci., 18, 376386, https://doi.org/10.1007/BF02919316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., 2002: The instability of the East Asian summer monsoon–ENSO relations. Adv. Atmos. Sci., 19, 111, https://doi.org/10.1007/s00376-002-0029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H., and H. Chen, 2012: Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon? J. Geophys. Res., 117, D12109, https://doi.org/10.1029/2012JD017734.

    • Search Google Scholar
    • Export Citation
  • Wu, B., T. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 29923005, https://doi.org/10.1175/2008JCLI2710.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets (in Chinese). China J. Geophys., 56, 11021111.

    • Search Google Scholar
    • Export Citation
  • Wu, R., and B. Wang, 2002: A contrast of the East Asian summer monsoon–ENSO relationship between 1962–77 and 1978–93. J. Climate, 15, 32663279, https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S. P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747, https://doi.org/10.1175/2008JCLI2544.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, X. L., J. Y. Liu, Q. Q. Shao, and J. W. Fan, 2008: The dynamic changes of ecosystem spatial pattern and structure in the Three-River Headwaters region in Qinghai Province during recent 30 years (in Chinese). Geogr. Res., 27, 829828.

    • Search Google Scholar
    • Export Citation
  • Xu, Z. X., T. L. Gong, and J. Y. Li, 2008: Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Processes, 22, 30563065, https://doi.org/10.1002/hyp.6892.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., B. Ye, D. Zhou, B. Wu, T. Foken, J. Qin, and Z. Zhou, 2011: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517534, https://doi.org/10.1007/s10584-011-0099-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Wu, J. Qin, C. Lin, W. Tang, and Y. Chen, 2014: Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet. Change, 112, 7991, https://doi.org/10.1016/j.gloplacha.2013.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yi, X., G. Li, and Y. Yin, 2013: Spatio-temporal variation of precipitation in the Three-River Headwater region from 1961 to 2010. J. Geogr. Sci., 23, 447464, https://doi.org/10.1007/s11442-013-1021-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T.-J., and R.-C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res., 110, D08104, https://doi.org/10.1029/2004JD005413.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Wang, W. Zhou, and J. Ma, 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 14631473, https://doi.org/10.1007/s00382-010-0852-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuo, H., B. Chen, S. Wang, Y. Guo, B. Zuo, L. Wu, and X. Gao, 2016: Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type. Agric. For. Meteor., 222, 19, https://doi.org/10.1016/j.agrformet.2016.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1732 610 70
PDF Downloads 836 173 22