Mechanisms Setting the Strength of Orographic Rossby Waves across a Wide Range of Climates in a Moist Idealized GCM

Robert C. J. Wills University of Washington, Seattle, Washington

Search for other papers by Robert C. J. Wills in
Current site
Google Scholar
PubMed
Close
and
Tapio Schneider California Institute of Technology, Pasadena, California

Search for other papers by Tapio Schneider in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Orographic stationary Rossby waves are an important influence on the large-scale circulation of the atmosphere, especially in Northern Hemisphere winter. Changes in stationary waves with global warming have the potential to modify patterns of surface temperature and precipitation. This paper presents an analysis of the forcing of stationary waves by midlatitude orography across a wide range of climates in a moist idealized GCM, where latent heating and transient eddies are allowed to feed back on the stationary-eddy dynamics. The stationary-eddy amplitude depends to leading order on the surface winds impinging on the orography, resulting in different climate change responses for mountains at different latitudes. Latent heating is found to damp orographic stationary waves, whereas transient eddies are found to reinforce them. As the climate warms, the damping by latent heating becomes more effective while the reinforcement by transient eddies becomes less effective, leading to an overall reduction in orographic stationary wave amplitude. These effects overwhelm the influences of a reduced meridional temperature gradient and increased dry static stability, both of which increase the sensitivity of the free troposphere to orographic forcing. Together with a reduction in the midlatitude meridional temperature gradient, the weakening of orographic stationary waves leads to reduced zonal asymmetry of temperature and net precipitation in warm, moist climates. While circulation changes in this idealized model cannot be expected to agree quantitatively with changes in the real world, the key physical processes identified are broadly relevant.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert C. Jnglin Wills, rcwills@uw.edu

Abstract

Orographic stationary Rossby waves are an important influence on the large-scale circulation of the atmosphere, especially in Northern Hemisphere winter. Changes in stationary waves with global warming have the potential to modify patterns of surface temperature and precipitation. This paper presents an analysis of the forcing of stationary waves by midlatitude orography across a wide range of climates in a moist idealized GCM, where latent heating and transient eddies are allowed to feed back on the stationary-eddy dynamics. The stationary-eddy amplitude depends to leading order on the surface winds impinging on the orography, resulting in different climate change responses for mountains at different latitudes. Latent heating is found to damp orographic stationary waves, whereas transient eddies are found to reinforce them. As the climate warms, the damping by latent heating becomes more effective while the reinforcement by transient eddies becomes less effective, leading to an overall reduction in orographic stationary wave amplitude. These effects overwhelm the influences of a reduced meridional temperature gradient and increased dry static stability, both of which increase the sensitivity of the free troposphere to orographic forcing. Together with a reduction in the midlatitude meridional temperature gradient, the weakening of orographic stationary waves leads to reduced zonal asymmetry of temperature and net precipitation in warm, moist climates. While circulation changes in this idealized model cannot be expected to agree quantitatively with changes in the real world, the key physical processes identified are broadly relevant.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Robert C. Jnglin Wills, rcwills@uw.edu
Save
  • Bender, F. A.-M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, https://doi.org/10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

  • Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Mon. Wea. Rev., 110, 18011820, https://doi.org/10.1175/1520-0493(1982)110<1801:DEIIC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brandefelt, J., and H. Körnich, 2008: Northern Hemisphere stationary waves in future climate projections. J. Climate, 21, 63416353, https://doi.org/10.1175/2008JCLI2373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caballero, R., and P. L. Langen, 2005: The dynamic range of poleward energy transport in an atmospheric general circulation model. Geophys. Res. Lett., 32, L02705, https://doi.org/10.1029/2004GL021581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, https://doi.org/10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, J., and S. Bordoni, 2014: Orographic effects of the Tibetan Plateau on the east Asian summer monsoon: An energetic perspective. J. Climate, 27, 30523072, https://doi.org/10.1175/JCLI-D-13-00479.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S.-C., and K. E. Trenberth, 1988: Orographically forced planetary waves in the Northern Hemisphere winter: Steady state model with wave-coupled lower boundary formulation. J. Atmos. Sci., 45, 657681, https://doi.org/10.1175/1520-0469(1988)045<0657:OFPWIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 17671788, https://doi.org/10.1175/JAS-D-15-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and I. M. Held, 1988: Stationary waves of the ice age climate. J. Climate, 1, 807819, https://doi.org/10.1175/1520-0442(1988)001<0807:SWOTIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corrsin, S., 1975: Limitations of gradient transport models in random walks and in turbulence. Advances in Geophysics, Vol. 18A, Academic Press, 25–60, https://doi.org/10.1016/S0065-2687(08)60451-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Daoud, W. Z., J. D. W. Kahl, and J. K. Ghorai, 2003: On the synoptic-scale Lagrangian autocorrelation function. J. Appl. Meteor., 42, 318324, https://doi.org/10.1175/1520-0450(2003)042<0318:OTSSLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Egger, J., 1976: The linear response of a hemispheric two-level primitive equation model to forcing by topography. Mon. Wea. Rev., 104, 351364, https://doi.org/10.1175/1520-0493(1976)104<0351:TLROAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., 2007: The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation. J. Atmos. Sci., 64, 19591976, https://doi.org/10.1175/JAS3935.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frierson, D. M. W., I. M. Held, and P. Zurita-Gotor, 2006: A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63, 25482566, https://doi.org/10.1175/JAS3753.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fyfe, J. C., 2003: Extratropical Southern Hemisphere cyclones: Harbingers of climate change? J. Climate, 16, 28022805, https://doi.org/10.1175/1520-0442(2003)016<2802:ESHCHO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geng, Q., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—Study with a high-resolution AGCM. J. Climate, 16, 22622274, https://doi.org/10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large Scale Dynamical Processes in the Atmosphere, B. Hoskins and R. Pearce, Eds., Academic Press, 127–168.

  • Held, I. M., 1993: Large-scale dynamics and global warming. Bull. Amer. Meteor. Soc., 74, 228241, https://doi.org/10.1175/1520-0477(1993)074<0228:LSDAGW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., 1999: The macroturbulence of the troposphere. Tellus, 51B, 5970, https://doi.org/10.3402/tellusb.v51i1.16260.

  • Held, I. M., and M. Ting, 1990: Orographic versus thermal forcing of stationary waves: The importance of the mean low-level wind. J. Atmos. Sci., 47, 495500, https://doi.org/10.1175/1520-0469(1990)047<0495:OVTFOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. L. Panetta, and R. T. Pierrehumbert, 1985: Stationary external Rossby waves in vertical shear. J. Atmos. Sci., 42, 865883, https://doi.org/10.1175/1520-0469(1985)042<0865:SERWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Held, I. M., M. Ting, and H. Wang, 2002: Northern winter stationary waves: Theory and modeling. J. Climate, 15, 21252144, https://doi.org/10.1175/1520-0442(2002)015<2125:NWSWTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Woollings, 2015: Persistent extratropical regimes and climate extremes. Curr. Climate Change Rep., 1, 115124, https://doi.org/10.1007/s40641-015-0020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Joseph, R., M. Ting, and P. J. Kushner, 2004: The global stationary wave response to climate change in a coupled GCM. J. Climate, 17, 540556, https://doi.org/10.1175/1520-0442(2004)017<0540:TGSWRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2011: Winter cold of eastern continental boundaries induced by warm ocean waters. Nature, 471, 621624, https://doi.org/10.1038/nature09924.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaspi, Y., and T. Schneider, 2013: The role of stationary eddies in shaping midlatitude storm tracks. J. Atmos. Sci., 70, 25962613, https://doi.org/10.1175/JAS-D-12-082.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266; Corrigendum, 49, RG3004, https://doi.org/10.1029/2011RG000370.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushner, P. J., I. M. Held, and T. L. Delworth, 2001: Southern Hemisphere atmospheric circulation response to global warming. J. Climate, 14, 22382249, https://doi.org/10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1979: The observed structure of tropospheric stationary waves and the local balances of vorticity and heat. J. Atmos. Sci., 36, 9961016, https://doi.org/10.1175/1520-0469(1979)036<0996:TOSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and J. M. Wallace, 1979: On the distribution of horizontal transports by transient eddies in the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 36, 18441861, https://doi.org/10.1175/1520-0469(1979)036<1844:OTDOHT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and D. S. Battisti, 2008: Reduced Atlantic storminess during Last Glacial Maximum: Evidence from a coupled climate model. J. Climate, 21, 35613579, https://doi.org/10.1175/2007JCLI2166.1; Corrigendum, 21, 6777, https://doi.org/10.1175/JCLI2811.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and I. M. Held, 2016: The response of an idealized atmosphere to orographic forcing: Zonal versus meridional propagation. J. Atmos. Sci., 73, 37013718, https://doi.org/10.1175/JAS-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mbengue, C., and T. Schneider, 2017: Storm-track shifts under climate change: Toward a mechanistic understanding using baroclinic mean available potential energy. J. Atmos. Sci., 74, 93110, https://doi.org/10.1175/JAS-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, https://doi.org/10.1146/annurev-earth-040809-152456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., D. A. Shaevitz, and A. H. Sobel, 2016: Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent. J. Adv. Model. Earth Syst., 8, 10551072, https://doi.org/10.1002/2016MS000663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., I. M. Held, and S. W. Lyons, 1986: Linear simulation of the stationary eddies in a general circulation model. Part I: The no-mountain model. J. Atmos. Sci., 43, 29442961, https://doi.org/10.1175/1520-0469(1986)043<2944:LSOTSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigam, S., I. M. Held, and S. W. Lyons, 1988: Linear simulation of the stationary eddies in a GCM. Part II: The “mountain” model. J. Atmos. Sci., 45, 14331452, https://doi.org/10.1175/1520-0469(1988)045<1433:LSOTSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2010: Understanding the varied response of the extratropical storm tracks to climate change. Proc. Natl. Acad. Sci. USA, 107, 19 17619 180, https://doi.org/10.1073/pnas.1011547107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., 2011: The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68, 7590, https://doi.org/10.1175/2010JAS3537.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008a: Energy of midlatitude transient eddies in idealized simulations of changed climates. J. Climate, 21, 57975806, https://doi.org/10.1175/2008JCLI2099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2008b: The hydrological cycle over a wide range of climates simulated with an idealized GCM. J. Climate, 21, 38153832, https://doi.org/10.1175/2007JCLI2065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and T. Schneider, 2009: Scaling of precipitation extremes over a wide range of climates simulated with an idealized GCM. J. Climate, 22, 56765685, https://doi.org/10.1175/2009JCLI2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1983: The atmospheric branch of the hydrological cycle and climate. Variations in the Global Water Budget, A. Street-Perrott, M. Beran, and R. Ratcliffe, Eds., Springer, 5–65.

    • Crossref
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Ringler, T. D., and K. H. Cook, 1997: Factors controlling nonlinearity in mechanically forced stationary waves over orography. J. Atmos. Sci., 54, 26122629, https://doi.org/10.1175/1520-0469(1997)054<2612:FCNIMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodwell, M. J., and B. J. Hoskins, 2001: Subtropical anticyclones and summer monsoons. J. Climate, 14, 31923211, https://doi.org/10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and P. A. O’Gorman, 2008: Moist convection and the thermal stratification of the extratropical troposphere. J. Atmos. Sci., 65, 35713583, https://doi.org/10.1175/2008JAS2652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., and C. C. Walker, 2008: Scaling laws and regime transitions of macroturbulence in dry atmospheres. J. Atmos. Sci., 65, 21532173, https://doi.org/10.1175/2007JAS2616.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., P. A. O’Gorman, and X. J. Levine, 2010: Water vapor and the dynamics of climate changes. Rev. Geophys., 48, RG3001, https://doi.org/10.1029/2009RG000302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1; Corrigendum, 29, 3471, https://doi.org/10.1175/JCLI-D-16-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, X., and D. R. Durran, 2014: The response of orographic precipitation over idealized midlatitude mountains due to global increases in CO2. J. Climate, 27, 39383956, https://doi.org/10.1175/JCLI-D-13-00460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, T. A. Shaw, and M. Ting, 2015: Mediterranean summer climate and the importance of Middle East topography. J. Climate, 28, 19771996, https://doi.org/10.1175/JCLI-D-14-00298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., R. Seager, M. Ting, and T. A. Shaw, 2016: Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Climate Change, 6, 65–70, https://doi.org/10.1038/nclimate2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, S.-W., M. Ting, and L. M. Polvani, 2009: The effect of topography on storm-track intensity in a relatively simple general circulation model. J. Atmos. Sci., 66, 393411, https://doi.org/10.1175/2008JAS2742.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., and I. M. Held, 1993: GCM response of northern winter stationary waves and storm tracks to increasing amounts of carbon dioxide. J. Climate, 6, 18591870, https://doi.org/10.1175/1520-0442(1993)006<1859:GRONWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swanson, K. L., and R. T. Pierrehumbert, 1997: Lower-tropospheric heat transport in the pacific storm track. J. Atmos. Sci., 54, 15331543, https://doi.org/10.1175/1520-0469(1997)054<1533:LTHTIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, https://doi.org/10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., and L. Yu, 1998: Steady response to tropical heating in wavy linear and nonlinear baroclinic models. J. Atmos. Sci., 55, 35653582, https://doi.org/10.1175/1520-0469(1998)055<3565:SRTTHI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toumi, R., N. Hartell, and K. Bignell, 1999: Mountain station pressure as an indicator of climate change. Geophys. Res. Lett., 26, 17511754, https://doi.org/10.1029/1999GL900351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1989: Linear stationary wave simulations of the time-mean climatological flow. J. Atmos. Sci., 46, 25092527, https://doi.org/10.1175/1520-0469(1989)046<2509:LSWSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1991: Nonlinear orographically forced planetary waves. J. Atmos. Sci., 48, 20892106, https://doi.org/10.1175/1520-0469(1991)048<2089:NOFPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 745 pp.

  • Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 43164340, https://doi.org/10.1175/JCLI4258.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, L., and P. J. Kushner, 2011: Diagnosing the stratosphere-troposphere stationary wave response to climate change in a general circulation model. J. Geophys. Res., 116, D16113, https://doi.org/10.1029/2010JD015473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., D. S. Battisti, and G. H. Roe, 2017: Mongolian mountains matter most: Impacts of the latitude and height of Asian orography on Pacific wintertime atmospheric circulation. J. Climate, 30, 40654082, https://doi.org/10.1175/JCLI-D-16-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., 2016: Stationary eddies and zonal variations of the global hydrological cycle in a changing climate. Ph.D. thesis, California Institute of Technology, 177 pp.

  • Wills, R. C., and T. Schneider, 2015: Stationary eddies and the zonal asymmetry of net precipitation and ocean freshwater forcing. J. Climate, 28, 51155133, https://doi.org/10.1175/JCLI-D-14-00573.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., and T. Schneider, 2016: How stationary eddies shape changes in the hydrological cycle: Zonally asymmetric experiments in an idealized GCM. J. Climate, 29, 31613179, https://doi.org/10.1175/JCLI-D-15-0781.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., M. P. Byrne, and T. Schneider, 2016: Thermodynamic and dynamic controls on changes in the zonally anomalous hydrological cycle. Geophys. Res. Lett., 43, 46404649, https://doi.org/10.1002/2016GL068418.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, R. C., X. J. Levine, and T. Schneider, 2017: Local energetic constraints on Walker circulation strength. J. Atmos. Sci., 74, 19071922, https://doi.org/10.1175/JAS-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 656 212 24
PDF Downloads 489 136 17