Variability of the Cold Season Climate in Central Asia. Part I: Weather Types and Their Tropical and Extratropical Drivers

Lars Gerlitz Department of Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany

Search for other papers by Lars Gerlitz in
Current site
Google Scholar
PubMed
Close
,
Eva Steirou Department of Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany

Search for other papers by Eva Steirou in
Current site
Google Scholar
PubMed
Close
,
Christoph Schneider Institute of Geography, Humboldt University of Berlin, Berlin, Germany

Search for other papers by Christoph Schneider in
Current site
Google Scholar
PubMed
Close
,
Vincent Moron Aix-Marseille University, CNRS, IRD, INRA, Collège de France, CEREGE, Aix-en-Provence, France, and International Research Institute for Climate and Society, Columbia University, Palisades, New York

Search for other papers by Vincent Moron in
Current site
Google Scholar
PubMed
Close
,
Sergiy Vorogushyn Department of Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany

Search for other papers by Sergiy Vorogushyn in
Current site
Google Scholar
PubMed
Close
, and
Bruno Merz Department of Hydrology, GFZ German Research Centre for Geosciences, Potsdam, Germany

Search for other papers by Bruno Merz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To understand the atmospheric mechanisms resulting in a pronounced cold season climate variability in central Asia, an objective weather-type classification is conducted, utilizing a k-means-based clustering approach applied to 500-hPa geopotential height (GPH) fields. Eight weather types (WT) are identified and analyzed with regard to characteristic pressure patterns and moisture fluxes over Eurasia and specific near-surface climate conditions over central Asia. To identify remote drivers of the central Asian climate, WT frequencies are analyzed for their relationships with tropical and extratropical teleconnection modes. The results indicate an influence of Northern Hemispheric planetary wave tracks on westerly moisture fluxes with positive anomalies of precipitation associated with the formation of a Rossby trough over central Asia. Particularly the propagation of the east Atlantic–western Russia and the Scandinavian patterns is shown to modulate regional climate conditions. Variations of ENSO are shown to affect the frequency of particular WTs because of the formation of an anticyclonic anomaly over the Indian Ocean and an increase of tropical fluxes of moisture and heat into central Asia during El Niño events. Further a WT internal influence of ENSO is distinctly defined, with enhanced moisture supply during the ENSO warm phase. The analysis of climatic trends shows that 50% of observed temperature changes can be assigned to variations of the WT composition, indicating that most likely changing regional circulation characteristics account for the enhanced warming rates in central Asia. Trends of precipitation sums are likewise shown to be associated with changing WT frequencies, although the WT–precipitation relationships include large uncertainties.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lars Gerlitz, lars.gerlitz@gfz-potsdam.de

Abstract

To understand the atmospheric mechanisms resulting in a pronounced cold season climate variability in central Asia, an objective weather-type classification is conducted, utilizing a k-means-based clustering approach applied to 500-hPa geopotential height (GPH) fields. Eight weather types (WT) are identified and analyzed with regard to characteristic pressure patterns and moisture fluxes over Eurasia and specific near-surface climate conditions over central Asia. To identify remote drivers of the central Asian climate, WT frequencies are analyzed for their relationships with tropical and extratropical teleconnection modes. The results indicate an influence of Northern Hemispheric planetary wave tracks on westerly moisture fluxes with positive anomalies of precipitation associated with the formation of a Rossby trough over central Asia. Particularly the propagation of the east Atlantic–western Russia and the Scandinavian patterns is shown to modulate regional climate conditions. Variations of ENSO are shown to affect the frequency of particular WTs because of the formation of an anticyclonic anomaly over the Indian Ocean and an increase of tropical fluxes of moisture and heat into central Asia during El Niño events. Further a WT internal influence of ENSO is distinctly defined, with enhanced moisture supply during the ENSO warm phase. The analysis of climatic trends shows that 50% of observed temperature changes can be assigned to variations of the WT composition, indicating that most likely changing regional circulation characteristics account for the enhanced warming rates in central Asia. Trends of precipitation sums are likewise shown to be associated with changing WT frequencies, although the WT–precipitation relationships include large uncertainties.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lars Gerlitz, lars.gerlitz@gfz-potsdam.de
Save
  • Allen, R. J., and C. S. Zender, 2011: Forcing of the Arctic Oscillation by Eurasian snow cover. J. Climate, 24, 65286539, https://doi.org/10.1175/2011JCLI4157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Apel, H., and Coauthors, 2018: Statistical forecast of seasonal discharge in central Asia using observational records: Development of a generic linear modelling tool for operational water resource management. Hydrol. Earth Syst. Sci., 22, 22252254, https://doi.org/10.5194/hess-22-2225-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balsamo, G., and Coauthors, 2015: ERA-Interim/land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci., 19, 389407, https://doi.org/10.5194/hess-19-389-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bao, X., and F. Zhang, 2013: Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Climate, 26, 206214, https://doi.org/10.1175/JCLI-D-12-00056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., and M. K. Tippett, 2008: Variability and predictability of central Asia river flows: Antecedent winter precipitation and large-scale teleconnections. J. Hydrometeor., 9, 13341349, https://doi.org/10.1175/2008JHM976.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., and A. Hoell, 2015: Drought in the Middle East and central–southwest Asia during winter 2013/14 [in “Explaining Extreme Events 2014”]. Bull. Amer. Meteor. Soc., 96 (12), S71S76, https://doi.org/10.1175/BAMS-D-15-00127.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., H. Cullen, and B. Lyon, 2002: Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Climate, 15, 697700, https://doi.org/10.1175/1520-0442(2002)015<0697:DICASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M. A., B. Zaitchik, S. Paz, E. Black, J. Evans, and A. Hoell, 2016: A review of drought in the Middle East and Southwest Asia. J. Climate, 29, 85478574, https://doi.org/10.1175/JCLI-D-13-00692.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bastos, A., and Coauthors, 2016: European land CO2 sink influenced by NAO and east-Atlantic pattern coupling. Nat. Commun., 7, 10315, https://doi.org/10.1038/ncomms10315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhandari, G., and B. B. Panthi, 2014: Analysis of agricultural drought and its effects on productivity at different district of Nepal. J. Inst. Sci. Technol., 19, 106110, https://doi.org/10.3126/jist.v19i1.13835.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boer, G. J., and K. Hamilton, 2008: QBO influence on extratropical predictive skill. Climate Dyn., 31, 9871000, https://doi.org/10.1007/s00382-008-0379-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bohner, J., 2006: General climatic controls and topoclimatic variations in central and high Asia. Boreas, 35, 279295, https://doi.org/10.1111/j.1502-3885.2006.tb01158.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Precipitation climate of central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brands, S., R. Manzanas, J. M. Gutiérrez, and J. Cohen, 2012: Seasonal predictability of wintertime precipitation in Europe using the snow advance index. J. Climate, 25, 40234028, https://doi.org/10.1175/JCLI-D-12-00083.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bueh, C., and H. Nakamura, 2007: Scandinavian pattern and its climatic impact. Quart. J. Roy. Meteor. Soc., 133, 21172131, https://doi.org/10.1002/qj.173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, J. W. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17, 10551068, https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., J. Wang, L. Jin, Q. Zhang, J. Li, and J. Chen, 2009: Rapid warming in mid-latitude central Asia for the past 100 years. Front. Earth Sci. China, 3, 4250, https://doi.org/10.1007/s11707-009-0013-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Entekhabi, 1999: Eurasian snow cover variability and Northern Hemisphere climate predictability. Geophys. Res. Lett., 26, 345348, https://doi.org/10.1029/1998GL900321; Corrigendum, 26, 1051, https://doi.org/10.1029/1999GL900200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and J. Jones, 2011: A new index for more accurate winter predictions. Geophys. Res. Lett., 38, L21701, https://doi.org/10.1029/2011GL049626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., J. C. Furtado, M. A. Barlow, V. A. Alexeev, and J. E. Cherry, 2012: Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett., 7, 014007, https://doi.org/10.1088/1748-9326/7/1/014007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coleman, J. S. M., and J. C. Rogers, 2007: A synoptic climatology of the central United States and associations with Pacific teleconnection pattern frequency. J. Climate, 20, 34853497, https://doi.org/10.1175/JCLI4201.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Copsey, D., R. Sutton, and J. R. Knight, 2006: Recent trends in sea level pressure in the Indian Ocean region. Geophys. Res. Lett., 33, L19712, https://doi.org/10.1029/2006GL027175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J. Climate, 15, 606623, https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diday, E., and J. C. Simon, 1980: Clustering analysis. Digital Pattern Recognition, K. S. Fu, Ed., Communication and Cybernetics, Vol. 10, Springer, 47–94.

  • Dimri, A. P., 2013: Interannual variability of Indian winter monsoon over the western Himalayas. Global Planet. Change, 106, 3950, https://doi.org/10.1016/j.gloplacha.2013.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duethmann, D., and Coauthors, 2015: Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, central Asia. Water Resour. Res., 51, 47274750, https://doi.org/10.1002/2014WR016716.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • El Kenawy, A. M, M. F. McCabe, G. L. Stenchikov, and J. Raj, 2014: Multi-decadal classification of synoptic weather types, observed trends and links to rainfall characteristics over Saudi Arabia. Front. Environ. Sci., 2, 37, https://doi.org/10.3389/fenvs.2014.00037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Serrano, J., and C. Frankignoul, 2014: Retraction: High predictability of the winter Euro-Atlantic climate from cryospheric variability. Nat. Geosci., 7, E2, https://doi.org/10.1038/ngeo2164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerlitz, L., O. Conrad, and J. Böhner, 2015: Large-scale atmospheric forcing and topographic modification of precipitation rates over high Asia—A neural-network-based approach. Earth Syst. Dyn., 6, 6181, https://doi.org/10.5194/esd-6-61-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerlitz, L., S. Vorogushyn, H. Apel, A. Gafurov, K. Unger-Shayesteh, and B. Merz, 2016: A statistically based seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia. Hydrol. Earth Syst. Sci., 20, 46054623, https://doi.org/10.5194/hess-20-4605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734.

  • Golian, S., O. Mazdiyasni, and A. AghaKouchak, 2015: Trends in meteorological and agricultural droughts in Iran. Theor. Appl. Climatol., 119, 679688, https://doi.org/10.1007/s00704-014-1139-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handorf, D., R. Jaiser, K. Dethloff, A. Rinke, and J. Cohen, 2015: Impacts of Arctic sea ice and continental snow cover changes on atmospheric winter teleconnections. Geophys. Res. Lett., 42, 23672377, https://doi.org/10.1002/2015GL063203.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hennig, C., 2007: Cluster-wise assessment of cluster stability. Comput. Stat. Data Anal., 52, 258271, https://doi.org/10.1016/j.csda.2006.11.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoell, A., C. Funk, and M. Barlow, 2014: The regional forcing of Northern Hemisphere drought during recent warm tropical west Pacific Ocean La Niña events. Climate Dyn., 42, 32893311, https://doi.org/10.1007/s00382-013-1799-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iglesias, I., M. N. Lorenzo, and J. J. Taboada, 2014: Seasonal predictability of the east Atlantic pattern from sea surface temperatures. PLOS ONE, 9, e86439, https://doi.org/10.1371/journal.pone.0086439.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Krichak, S. O., and P. Alpert, 2005: Decadal trends in the east Atlantic–west Russia pattern and Mediterranean precipitation. Int. J. Climatol., 25, 183192, https://doi.org/10.1002/joc.1124.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, C. C., 2017: Reanalysing the impacts of atmospheric teleconnections on cold-season weather using multivariate surface weather types and self-organizing maps. Int. J. Climatol., 37, 37143730, https://doi.org/10.1002/joc.4950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, H. Wang, M. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA, 109, 40744079, https://doi.org/10.1073/pnas.1114910109; Corrigendum, 109, 6781–6783, https://doi.org/10.1073/pnas.1204582109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., L. Wang, D. Chen, K. Tu, C. Ruan, and Z. Hu, 2016: Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau. Climate Dyn., 46, 34813497, https://doi.org/10.1007/s00382-015-2782-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest central Asia. Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. G., and A. A. Scaife, 2009: Impact of the QBO on surface winter climate. J. Geophys. Res., 114, D18110, https://doi.org/10.1029/2009JD011737.

    • Search Google Scholar
    • Export Citation
  • Maussion, F., D. Scherer, T. Mölg, E. Collier, J. Curio, and R. Finkelnburg, 2014: Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Climate, 27, 19101927, https://doi.org/10.1175/JCLI-D-13-00282.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Michelangeli, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256, https://doi.org/10.1175/1520-0469(1995)052<1237:WRRAQS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murawski, A., S. Vorogushyn, G. Bürger, L. Gerlitz, and B. Merz, 2018: Do changing weather types explain observed climatic trends in the Rhine basin? An analysis of within- and between-type changes. J. Geophys. Res. Atmos., 123, 15621584, https://doi.org/10.1002/2017JD026654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palazzi, E., J. von Hardenberg, and A. Provenzale, 2013: Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos., 118, 85100, https://doi.org/10.1029/2012JD018697.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Philipp, A., and Coauthors, 2010: Cost733cat—A database of weather and circulation type classifications. Phys. Chem. Earth, 35, 360373, https://doi.org/10.1016/j.pce.2009.12.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roghani, R., S. Soltani, and H. Bashari, 2016: Influence of Southern Oscillation on autumn rainfall in Iran (1951–2011). Theor. Appl. Climatol., 124, 411423, https://doi.org/10.1007/s00704-015-1423-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roller, C. D., J.-H. Qian, L. Agel, M. Barlow, and V. Moron, 2016: Winter weather regimes in the Northeast United States. J. Climate, 29, 29632980, https://doi.org/10.1175/JCLI-D-15-0274.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., L. Vasilina, F. Pertziger, and S. Dirren, 2004: Seasonal runoff forecasting using precipitation from meteorological data assimilation systems. J. Hydrometeor., 5, 959973, https://doi.org/10.1175/1525-7541(2004)005<0959:SRFUPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. L. Vidale, and C. Schär, 2008: The precipitation climate of central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, and C. Schär, 2009: Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region. J. Climate, 22, 29402957, https://doi.org/10.1175/2008JCLI2625.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703708, https://doi.org/10.1038/ngeo2253.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sheridan, S. C., 2003: North American weather-type frequency and teleconnection indices. Int. J. Climatol., 23, 2745, https://doi.org/10.1002/joc.863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirvani, A., and W. A. Landman, 2016: Seasonal precipitation forecast skill over Iran. Int. J. Climatol., 36, 18871900, https://doi.org/10.1002/joc.4467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J. Climate, 16, 14951510, https://doi.org/10.1175/1520-0442-16.10.1495.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sohn, B. J., S.-W. Yeh, J. Schmetz, and H.-J. Song, 2013: Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results. Climate Dyn., 40, 17211732, https://doi.org/10.1007/s00382-012-1484-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., W. A. Norton, and S. P. Jewson, 2000: The North Atlantic Oscillation—What role for the ocean? Atmos. Sci. Lett., 1, 89100, https://doi.org/10.1006/asle.2000.0021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F. S., F. Giorgi, J. S. Pal, and M. P. King, 2006: Effect of remote forcings on the winter precipitation of central southwest Asia. Part 1: Observations. Theor. Appl. Climatol., 86, 147160, https://doi.org/10.1007/s00704-005-0217-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F. S., F. Giorgi, J. S. Pal, and K. Keay, 2010: Regional climate model simulation of winter climate over central–southwest Asia, with emphasis on NAO and ENSO effects. Int. J. Climatol., 30, 220235, https://doi.org/10.1002/joc.1887.

    • Search Google Scholar
    • Export Citation
  • Terray, P., and S. Dominiak, 2005: Indian Ocean sea surface temperature and El Niño–Southern Oscillation: A new perspective. J. Climate, 18, 13511368, https://doi.org/10.1175/JCLI3338.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, R. M., C. M. Gouveia, and D. Barriopedro, 2010: The intense 2007–2009 drought in the Fertile Crescent: Impacts and associated atmospheric circulation. Agric. For. Meteor., 150, 12451257, https://doi.org/10.1016/j.agrformet.2010.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, A., and X. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D05102, https://doi.org/10.1029/2011JD016553.

    • Search Google Scholar
    • Export Citation
  • Wulf, H., B. Bookhagen, and D. Scherler, 2010: Seasonal precipitation gradients and their impact on fluvial sediment flux in the northwest Himalaya. Geomorphology, 118, 1321, https://doi.org/10.1016/j.geomorph.2009.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yadav, R. K., J. H. Yoo, F. Kucharski, and M. A. Abid, 2010: Why is ENSO influencing northwest India winter precipitation in recent decades? J. Climate, 23, 19791993, https://doi.org/10.1175/2009JCLI3202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, Z.-Y., H. Wang, and X. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1022 233 25
PDF Downloads 814 170 20