Projection of Landfalling–Tropical Cyclone Rainfall in the Eastern United States under Anthropogenic Warming

Maofeng Liu Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Maofeng Liu in
Current site
Google Scholar
PubMed
Close
,
Gabriel A. Vecchi Department of Geosciences, and Princeton Environmental Institute, Princeton University, Princeton, New Jersey

Search for other papers by Gabriel A. Vecchi in
Current site
Google Scholar
PubMed
Close
,
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
, and
Hiroyuki Murakami NOAA/Geophysical Fluid Dynamics Laboratory, and Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey

Search for other papers by Hiroyuki Murakami in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Landfalling–tropical cyclone (TC) rainfall is an important element of inland flood hazards in the eastern United States. The projection of landfalling-TC rainfall under anthropogenic warming provides insight into future flood risks. This study examines the frequency of landfalling TCs and associated rainfall using the GFDL Forecast-Oriented Low Ocean Resolution (FLOR) climate model through comparisons with observed TC track and rainfall over the July–November 1979–2005 seasons. The projection of landfalling-TC frequency and rainfall under the representative concentration pathway (RCP) 4.5 scenario for the late twenty-first century is explored, including an assessment of the impacts of extratropical transition (ET). In most regions of the southeastern United States, competition between increased storm rain rate and decreased storm frequency dominates the change of annual TC rainfall, and rainfall from ET and non-ET storms. In the northeastern United States, a prominent feature is the striking increase of ET-storm frequency but with tropical characteristics (i.e., prior to the ET phase), a key element of increased rainfall. The storm-centered rainfall composite analyses show the greatest increase at a radius of a few hundred kilometers from the storm centers. Over both ocean and land, the increase of rainfall within 500 km from the storm center exceeds the Clausius–Clapeyron scaling for TC-phase storms. Similar results are found in the front-left quadrant of ET-phase storms. Future work involving explorations of multiple models (e.g., higher atmospheric resolution version of the FLOR model) for TC-rainfall projection is expected to add more robustness to projection results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maofeng Liu, maofeng@princeton.edu

Abstract

Landfalling–tropical cyclone (TC) rainfall is an important element of inland flood hazards in the eastern United States. The projection of landfalling-TC rainfall under anthropogenic warming provides insight into future flood risks. This study examines the frequency of landfalling TCs and associated rainfall using the GFDL Forecast-Oriented Low Ocean Resolution (FLOR) climate model through comparisons with observed TC track and rainfall over the July–November 1979–2005 seasons. The projection of landfalling-TC frequency and rainfall under the representative concentration pathway (RCP) 4.5 scenario for the late twenty-first century is explored, including an assessment of the impacts of extratropical transition (ET). In most regions of the southeastern United States, competition between increased storm rain rate and decreased storm frequency dominates the change of annual TC rainfall, and rainfall from ET and non-ET storms. In the northeastern United States, a prominent feature is the striking increase of ET-storm frequency but with tropical characteristics (i.e., prior to the ET phase), a key element of increased rainfall. The storm-centered rainfall composite analyses show the greatest increase at a radius of a few hundred kilometers from the storm centers. Over both ocean and land, the increase of rainfall within 500 km from the storm center exceeds the Clausius–Clapeyron scaling for TC-phase storms. Similar results are found in the front-left quadrant of ET-phase storms. Future work involving explorations of multiple models (e.g., higher atmospheric resolution version of the FLOR model) for TC-rainfall projection is expected to add more robustness to projection results.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Maofeng Liu, maofeng@princeton.edu
Save
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, https://doi.org/10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., L. F. Bosart, and A. R. Aiyyer, 2007: Precipitation distribution associated with landfalling tropical cyclones over the eastern United States. Mon. Wea. Rev., 135, 21852206, https://doi.org/10.1175/MWR3382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, https://doi.org/10.1029/2010GL046258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., E. Yonekura, C. Karamperidou, N. Cavanaugh, and K. Serafin, 2013: U.S. hurricanes and economic damage: Extreme value perspective. Nat. Hazards Rev., 14, 237246, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B.-F., R. L. Elsberry, and C.-S. Lee, 2014: Origin and maintenance of the long-lasting, outer mesoscale convective system in Typhoon Fengshen (2008). Mon. Wea. Rev., 142, 28382859, https://doi.org/10.1175/MWR-D-14-00036.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 29052926, https://doi.org/10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., K. Simmons, and D. Sutter, 2011: An analysis of coastal and inland fatalities in landfalling US hurricanes. Nat. Hazards, 59, 15131531, https://doi.org/10.1007/s11069-011-9849-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., G. Villarini, E. Michel-Kerjan, and J. A. Smith, 2013: Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett., 8, 044056, https://doi.org/10.1088/1748-9326/8/4/044056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, https://doi.org/10.1175/JCLI3629.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiMego, G. J., and L. F. Bosart, 1982: The transformation of tropical storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Mon. Wea. Rev., 110, 385411, https://doi.org/10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Wea. Rev., 131, 909925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., S.-J. Lin, and C. Tu, 2016: High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Climate, 29, 42934314, https://doi.org/10.1175/JCLI-D-15-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, https://doi.org/10.1175/1520-0442(2001)014<0546:ACOTET>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jia, L., and Coauthors, 2015: Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J. Climate, 28, 20442062, https://doi.org/10.1175/JCLI-D-14-00112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, H., and E. J. Zipser, 2010: Contribution of tropical cyclones to the global precipitation from eight seasons of TRMM data: Regional, seasonal, and interannual variations. J. Climate, 23, 15261543, https://doi.org/10.1175/2009JCLI3303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khouakhi, A., G. Villarini, and G. A. Vecchi, 2017: Contribution of tropical cyclones to rainfall at the global scale. J. Climate, 30, 359372, https://doi.org/10.1175/JCLI-D-16-0298.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309325, https://doi.org/10.2151/jmsj.2011-402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., J. J. Sirutis, S. T. Garner, G. A. Vecchi, and I. M. Held, 2008: Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci., 1, 359364, https://doi.org/10.1038/ngeo202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, https://doi.org/10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, https://doi.org/10.1175/JCLI-D-12-00539.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, https://doi.org/10.1175/jcli-d-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, https://doi.org/10.1029/2010GL045164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. L. Franklin, 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, https://doi.org/10.1175/MWR-D-12-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, N., J. A. Smith, G. Villarini, T. P. Marchok, and M. L. Baeck, 2010: Modeling extreme rainfall, winds, and surge from Hurricane Isabel (2003). Wea. Forecasting, 25, 13421361, https://doi.org/10.1175/2010WAF2222349.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun., 6, 6591, https://doi.org/10.1038/ncomms7591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2, https://ams.confex.com/ams/pdfpapers/83847.pdf.

  • Liu, M., and J. A. Smith, 2016: Extreme rainfall from landfalling tropical cyclones in the eastern United States: Hurricane Irene (2011). J. Hydrometeor., 17, 28832904, https://doi.org/10.1175/JHM-D-16-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2017: The present-day simulation and twenty-first-century projection of the climatology of extratropical transition in the North Atlantic. J. Climate, 30, 27392756, https://doi.org/10.1175/JCLI-D-16-0352.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyons, S. W., 2004: U.S. tropical cyclone landfall variability: 1950–2002. Wea. Forecasting, 19, 473480, https://doi.org/10.1175/1520-0434(2004)019<0473:UTCLV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McAdie, C. J., C. W. Landsea, C. J. Neumann, J. E. David, E. S. Blake, and G. R. Hammer, 2009: Tropical cyclones of the North Atlantic Ocean, 1851–2006 (with 2007 and 2008 track maps included). NOAA/NWS/NESDIS Historical Climatological Series Rep. 6-2, 238 pp., http://purl.access.gpo.gov/GPO/LPS119129.

  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, https://doi.org/10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 90589079, https://doi.org/10.1175/JCLI-D-15-0216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., G. Villarini, G. A. Vecchi, W. Zhang, and R. Gudgel, 2016a: Statistical–dynamical seasonal forecast of North Atlantic and U.S. landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. Mon. Wea. Rev., 144, 21012123, https://doi.org/10.1175/MWR-D-15-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2016b: Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model. J. Climate, 29, 79777989, https://doi.org/10.1175/JCLI-D-16-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prat, O. P., and B. R. Nelson, 2013: Mapping the world’s tropical cyclone rainfall contribution over land using the TRMM Multi-satellite Precipitation Analysis. Water Resour. Res., 49, 72367254, https://doi.org/10.1002/wrcr.20527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2014: Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Amer. Meteor. Soc., 95, 341346, https://doi.org/10.1175/BAMS-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scoccimarro, E., S. Gualdi, G. Villarini, G. A. Vecchi, M. Zhao, K. Walsh, and A. Navarra, 2014: Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2. J. Climate, 27, 46424654, https://doi.org/10.1175/JCLI-D-14-00065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, J. A., G. Villarini, and M. L. Baeck, 2011: Mixture distributions and the hydroclimatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeor., 12, 294309, https://doi.org/10.1175/2010JHM1242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sturdevant-Rees, P., J. A. Smith, J. Morrison, and M. L. Baeck, 2001: Tropical storms and the flood hydrology of the central Appalachians. Water Resour. Res., 37, 21432168, https://doi.org/10.1029/2000WR900310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, https://doi.org/10.1029/2009WR008395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., J. A. Smith, M. L. Baeck, T. Marchok, and G. A. Vecchi, 2011: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, https://doi.org/10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., D. A. Lavers, E. Scoccimarro, M. Zhao, M. F. Wehner, G. A. Vecchi, T. R. Knutson, and K. A. Reed, 2014a: Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Climate, 27, 46224641, https://doi.org/10.1175/JCLI-D-13-00780.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villarini, G., R. Goska, J. A. Smith, and G. A. Vecchi, 2014b: North Atlantic tropical cyclones and U.S. flooding. Bull. Amer. Meteor. Soc., 95, 13811388, https://doi.org/10.1175/BAMS-D-13-00060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 2012: Distributions and trends of death and destruction from hurricanes in the United States, 1900–2008. Nat. Hazards Rev., 13, 5764, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000046.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2014: A 40-year climatology of extratropical transition in the eastern North Pacific. J. Climate, 27, 59996015, https://doi.org/10.1175/JCLI-D-13-00645.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck, 2013: Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition. J. Hydrol., 488, 150165, https://doi.org/10.1016/j.jhydrol.2013.03.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., J. A. Smith, and M. L. Baeck, 2014: Flood frequency analysis using radar rainfall fields and stochastic storm transposition. Water Resour. Res., 50, 15921615, https://doi.org/10.1002/2013WR014224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, D. B., T. R. Knutson, and J. A. Smith, 2015: Regional climate model projections of rainfall from U.S. landfalling tropical cyclones. Climate Dyn., 45, 33653379, https://doi.org/10.1007/s00382-015-2544-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. Villarini, G. A. Vecchi, H. Murakami, and R. Gudgel, 2016a: Statistical-dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the high-resolution GFDL FLOR coupled model. J. Adv. Model. Earth Syst., 8, 538565, https://doi.org/10.1002/2015MS000607.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., and Coauthors, 2016b: Improved simulation of tropical cyclone responses to ENSO in the western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 29, 13911415, https://doi.org/10.1175/JCLI-D-15-0475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, W., G. A. Vecchi, G. Villarini, H. Murakami, R. Gudgel, and X. Yang, 2017: Statistical–dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the GFDL FLOR coupled climate model. J. Climate, 30, 22092232, https://doi.org/10.1175/JCLI-D-16-0487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 918 214 21
PDF Downloads 738 175 16