Nearly Synchronous Multidecadal Oscillations of Surface Air Temperature in Punta Arenas and the Atlantic Multidecadal Oscillation Index

Mary Toshie Kayano Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, São Paulo, Brazil

Search for other papers by Mary Toshie Kayano in
Current site
Google Scholar
PubMed
Close
and
Alberto W. Setzer Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São José dos Campos, São Paulo, Brazil

Search for other papers by Alberto W. Setzer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Atlantic multidecadal oscillation (AMO) signature in southern South America (SA) is examined using the surface air temperature (T-air) of Punta Arenas, Chile (53.0°S, 70.85°W), during the 1888–2016 period. The T-air shows multidecadal oscillations with a significant positive correlation of 0.77 to the AMO index. The relations of the Punta Arenas T-air time series with the AMO-related global sea surface temperature (SST) and regional circulation anomaly patterns are discussed. During the warm (cold) AMO phase, a cold (warm) center in southwestern Atlantic waters induces low-level anticyclonic (cyclonic) anomalies in the region, which together with the cyclonic (anticyclonic) anomalies in the southeastern Pacific channel the northerly (southerly) flow over southern SA. This meridional flow transports warm (cold) air from lower (higher) latitudes into the Punta Arenas region. Therefore, the temperature horizontal advection at the low level is the main thermodynamic process that alters the Punta Arenas T-air in a multidecadal time scale. The use of a relation between a long T-air surface sensor series in southern SA with the AMO presents a novel approach in climate monitoring and modeling.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mary T. Kayano, mary.kayano@inpe.br

Abstract

The Atlantic multidecadal oscillation (AMO) signature in southern South America (SA) is examined using the surface air temperature (T-air) of Punta Arenas, Chile (53.0°S, 70.85°W), during the 1888–2016 period. The T-air shows multidecadal oscillations with a significant positive correlation of 0.77 to the AMO index. The relations of the Punta Arenas T-air time series with the AMO-related global sea surface temperature (SST) and regional circulation anomaly patterns are discussed. During the warm (cold) AMO phase, a cold (warm) center in southwestern Atlantic waters induces low-level anticyclonic (cyclonic) anomalies in the region, which together with the cyclonic (anticyclonic) anomalies in the southeastern Pacific channel the northerly (southerly) flow over southern SA. This meridional flow transports warm (cold) air from lower (higher) latitudes into the Punta Arenas region. Therefore, the temperature horizontal advection at the low level is the main thermodynamic process that alters the Punta Arenas T-air in a multidecadal time scale. The use of a relation between a long T-air surface sensor series in southern SA with the AMO presents a novel approach in climate monitoring and modeling.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mary T. Kayano, mary.kayano@inpe.br
Save
  • Barros, V. R., A. M. Grimm, and M. E. Doyle, 2002: Relationship between temperature and circulation in southeastern South America and its influence from El Niño and La Niña events. J. Meteor. Soc. Japan, 80, 2132, https://doi.org/10.2151/jmsj.80.21.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, J. M., R. R. Chaves, and V. da Silva Marques, 2009: Temperature variability over South America. J. Climate, 22, 58545869, https://doi.org/10.1175/2009JCLI2551.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Coronato, F., and A. Bisigato, 1998: A temperature pattern classification in Patagonia. Int. J. Climatol., 18, 765773, https://doi.org/10.1002/(SICI)1097-0088(19980615)18:7<765::AID-JOC282>3.0.CO;2-H.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crosby, D. S., L. C. Breaker, and W. H. Gemmill, 1993: A proposed definition for vector correlation in geophysics: Theory and application. J. Atmos. Oceanic Technol., 10, 355367, https://doi.org/10.1175/1520-0426(1993)010<0355:APDFVC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crowley, T. L., and K.-Y. Kim, 1993: Towards development of a strategy for determining the origins of decadal-centennial scale climate variability. Quat. Sci. Rev., 12, 375385, https://doi.org/10.1016/S0277-3791(05)80003-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661676, https://doi.org/10.1007/s003820000075.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., M. A. Alexander, S.-P. Xie, and A. S. Phillips, 2010: Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115143, https://doi.org/10.1146/annurev-marine-120408-151453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. S. Battisti, R. D. Garreaud, G. J. McCabe, and C. M. Bitz, 2001: Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. Interhemispheric Climate Linkages: Present and Past Climates in the Americas and Their Societal Effects, V. Markgraf, Ed., Academic Press, 1–16.

    • Crossref
    • Export Citation
  • Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 21472153, https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., and A. Mestas-Nuñez, 1999: Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Climate, 12, 27192733, https://doi.org/10.1175/1520-0442(1999)012<2719:MVIGSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Enfield, D. B., A. Mestas-Nuñez, and P. J. Trimple, 2001: The Atlantic multidecadal oscillations and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., M. Vuille, R. Compagnucci, and J. Marengo, 2009: Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 281, 180195, https://doi.org/10.1016/j.palaeo.2007.10.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GISTEMP Team, 2017: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies, accessed 15 August 2017, https://data.giss.nasa.gov/gistemp/.

  • Goldenberg, S. B., C. Landsea, A. M. Mestas-Nuñez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474479, https://doi.org/10.1126/science.1060040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2003: The El Niño impact on the summer monsoon in Brazil: Regional processes versus remote influences. J. Climate, 16, 263280, https://doi.org/10.1175/1520-0442(2003)016<0263:TENIOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2004: How do La Niña events disturb the summer monsoon system in Brazil? Climate Dyn., 22, 123138, https://doi.org/10.1007/s00382-003-0368-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and M. T. Zilli, 2009: Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J. Climate, 22, 22572275, https://doi.org/10.1175/2008JCLI2345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., J. Pal, and F. Giorgi, 2007: Connection between spring conditions and peak summer monsoon rainfall in South America: Role of soil moisture, surface temperature, and topography in eastern Brazil. J. Climate, 20, 59295945, https://doi.org/10.1175/2007JCLI1684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and C. F. Ropelewski, 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593, https://doi.org/10.1175/1520-0442(1992)005<0577:STPAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Huang, B., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 1990: Climate Change: The IPCC Scientific Assessment. Cambridge University Press, 410 pp.

  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th Century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kayano, M. T., R. V. Andreoli, R. A. F. de Souza, and S. R. Garcia, 2017: Spatiotemporal variability modes of surface air temperature in South America during the 1951–2010 period: ENSO and non-ENSO components. Int. J. Climatol., 37, 113, https://doi.org/10.1002/joc.4972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, R. A., 2000: A North Atlantic climate pacemaker for the centuries. Science, 288, 19841986, https://doi.org/10.1126/science.288.5473.1984.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G., and H. F. Diaz, 1989: Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 10691090, https://doi.org/10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, J. R., C. K. Folland, and A. A. Scaife, 2006: Climate impacts of the Atlantic multidecadal oscillation. Geophys. Res. Lett., 33, L17706, https://doi.org/10.1029/2006GL026242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., M. Collins, H. Pohlmann, and N. Keenlyside, 2006: A review of predictability studies of Atlantic sector climate on decadal time scales. J. Climate, 19, 59715987, https://doi.org/10.1175/JCLI3945.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lyu, K., and J.-Y. Yu, 2017: Climate impacts of the Atlantic Multidecadal Oscillation simulated in the CMIP5 models: A re-evaluation based on a revised index. Geophys. Res. Lett., 44, 38673876, https://doi.org/10.1002/2017GL072681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marengo, J. A., and C. C. Camargo, 2008: Surface air temperature trends in southern Brazil for 1960–2002. Int. J. Climatol., 28, 893904, https://doi.org/10.1002/joc.1584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mestas-Nuñez, A. M., and D. B. Enfield, 1999: Rotated global modes of non-ENSO sea surface temperature variability. J. Climate, 12, 27342746, https://doi.org/10.1175/1520-0442(1999)012<2734:RGMONE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naumann, G., and W. Vargas, 2017: Variabilidad de baja frecuencia de la persistencia de la temperatura en el sudeste de Sudamérica (Low-frequency variability of surface air temperature persistence in southern South America). Rev. Bras. Meteor., 32, 112, https://doi.org/10.1590/0102-778632120150044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., and G. W. Brier, 1968: Some Applications of Statistics to Meteorology. Pennsylvania State University, 224 pp.

  • Prohaska, F. J., 1976: Climates of Central and South America. World Survey of Climatology, W. Schwerdtfeger, Ed., Vol. 12, Elsevier, 532 pp.

  • Quintana-Gomez, R., 1999: Trends of maximum and minimum temperature in northern South America. J. Climate, 12, 21042112, https://doi.org/10.1175/1520-0442(1999)012<2104:TOMAMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1989: Precipitation patterns associated with the high index phase of the Southern Oscillation. J. Climate, 2, 268284, https://doi.org/10.1175/1520-0442(1989)002<0268:PPAWTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rusticucci, M., and M. Barrucand, 2004: Observed trends and changes in temperature extremes over Argentina. J. Climate, 17, 40994107, https://doi.org/10.1175/1520-0442(2004)017<4099:OTACIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sansigolo, C. A., and M. T. Kayano, 2010: Trends of seasonal maximum and minimum temperatures and precipitation in southern Brazil for the 1913-2006 period. Theor. Appl. Climatol., 101, 209216, https://doi.org/10.1007/s00704-010-0270-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723726, https://doi.org/10.1038/367723a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., Y. Kushnir, R. Seager, and C. Li, 2011: Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys. Res. Lett., 38, L17705, https://doi.org/10.1029/2011GL048712.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vargas, W. M., and G. Naumann, 2008: Impacts of climatic change and low frequency variability in reference series on daily maximum and minimum temperature in southern South America. Reg. Environ. Change, 8, 4557, https://doi.org/10.1007/s10113-007-0041-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Victoria, R. L., L. A. Martinelli, J. M. Moraes, M. V. Ballester, and A. V. Krushche, 1998: Surface air temperature variations in the Amazon region and its borders during this century. J. Climate, 11, 11051110, https://doi.org/10.1175/1520-0442(1998)011<1105:SATVIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Villalba, R., J. A. Boninsegna, A. Lara, T. T. Veblen, F. A. Roig, J. C. Aravena, and A. Ripalta, 1996: Interdecadal climatic variations in millennial temperature reconstructions from southern South America. Climatic Variations and Forcing Mechanisms of the Last 2000 Years, P. D. Jones, R. S. Bradley, and J. Jousel, Eds., NATO ASI Series, Vol. 41, Springer-Verlag, 161–189.

    • Crossref
    • Export Citation
  • Vincent, L. A., and Coauthors, 2005: Observed trends in indices of daily temperature extremes in South America 1960–2000. J. Climate, 18, 50115023, https://doi.org/10.1175/JCLI3589.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zazulie, N., M. Rusticucci, and S. Solomon, 2010: Changes in climate at high southern latitudes: A unique daily record at Orcadas spanning 1903–2008. J. Climate, 23, 189196, https://doi.org/10.1175/2009JCLI3074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K. M. Lau, 2001: Principal modes of interannual and decadal variability of summer rainfall over South America. Int. J. Climatol., 21, 16231644, https://doi.org/10.1002/joc.700.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 634 354 104
PDF Downloads 178 30 4