Divergent Responses of Extratropical Atmospheric Circulation to Interhemispheric Dipolar SST Forcing over the Two Hemispheres in Boreal Winter

Jiaqing Xue State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
College of Earth Science, University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiaqing Xue in
Current site
Google Scholar
PubMed
Close
,
Cheng Sun College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Cheng Sun in
Current site
Google Scholar
PubMed
Close
,
Jianping Li College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Jianping Li in
Current site
Google Scholar
PubMed
Close
,
Jiangyu Mao State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Jiangyu Mao in
Current site
Google Scholar
PubMed
Close
,
Hisashi Nakamura Climate Science Research Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan

Search for other papers by Hisashi Nakamura in
Current site
Google Scholar
PubMed
Close
,
Takafumi Miyasaka Climate Science Research Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Search for other papers by Takafumi Miyasaka in
Current site
Google Scholar
PubMed
Close
, and
Yidan Xu College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

Search for other papers by Yidan Xu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Global sea surface temperature (SST) evolution exhibits an antiphase variation between the two hemispheres that is referred to as the SST interhemispheric dipole (SSTID) mode. The impacts of the SSTID on extratropical atmospheric circulation in boreal winter are explored by both regression analysis and SST-forced numerical simulations. The responses of extratropical circulation to SSTID thermal forcing bear an equivalent barotropic structure. For the Southern Hemisphere (SH), positive SSTID events lead to a meridional dipolar perturbation in sea level pressure (SLP), similar in pattern to the positive southern annular mode (SAM). Although SSTID-forced SLP anomalies over the Northern Hemisphere (NH) do not exhibit a zonally symmetric pattern as is the case over the SH, they still show signs of a meridional dipole opposite to the SH over the oceans. Divergent circulation responses to SSTID forcing between the two hemispheres are suggested to be associated with contrasting storm-track variations. Positive SSTID events weaken oceanic fronts in both the North Atlantic and North Pacific, and thus lead to the decline of NH storm-track activity by decreasing atmospheric baroclinicity. In the SH, positive SSTID events correspond to the enhancement of SH transients by intensifying the Antarctic polar-frontal zone. Additionally, local baroclinic energy conversions are diagnosed to explain the SSTID-related storm-track variations over both hemispheres. Finally, an investigation of transient eddy feedback indicates that the SSTID mode modulates extratropical atmospheric circulation, primarily by regulating storm tracks and changing the corresponding eddy feedback.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Jianping Li, ljp@bnu.edu.cn

Abstract

Global sea surface temperature (SST) evolution exhibits an antiphase variation between the two hemispheres that is referred to as the SST interhemispheric dipole (SSTID) mode. The impacts of the SSTID on extratropical atmospheric circulation in boreal winter are explored by both regression analysis and SST-forced numerical simulations. The responses of extratropical circulation to SSTID thermal forcing bear an equivalent barotropic structure. For the Southern Hemisphere (SH), positive SSTID events lead to a meridional dipolar perturbation in sea level pressure (SLP), similar in pattern to the positive southern annular mode (SAM). Although SSTID-forced SLP anomalies over the Northern Hemisphere (NH) do not exhibit a zonally symmetric pattern as is the case over the SH, they still show signs of a meridional dipole opposite to the SH over the oceans. Divergent circulation responses to SSTID forcing between the two hemispheres are suggested to be associated with contrasting storm-track variations. Positive SSTID events weaken oceanic fronts in both the North Atlantic and North Pacific, and thus lead to the decline of NH storm-track activity by decreasing atmospheric baroclinicity. In the SH, positive SSTID events correspond to the enhancement of SH transients by intensifying the Antarctic polar-frontal zone. Additionally, local baroclinic energy conversions are diagnosed to explain the SSTID-related storm-track variations over both hemispheres. Finally, an investigation of transient eddy feedback indicates that the SSTID mode modulates extratropical atmospheric circulation, primarily by regulating storm tracks and changing the corresponding eddy feedback.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Jianping Li, ljp@bnu.edu.cn
Save
  • Blackmon, M. L., J. M. Wallace, N.-C. Lau, and S. L. Mullen, 1977: An observational study of the Northern Hemisphere wintertime circulation. J. Atmos. Sci., 34, 10401053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braganza, K., D. J. Karoly, A. C. Hirst, P. Stott, R. J. Stouffer, and S. F. B. Tett, 2003: Simple indices of global climate variability and change: Part I—Variability and correlation structure. Climate Dyn., 20, 491502, https://doi.org/10.1007/s00382-002-0286-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D., B. J. Hoskins, and M. J. Blackburn, 2008: The storm-track response to idealized SST perturbations in an aquaplanet GCM. J. Atmos. Sci., 65, 28422860, https://doi.org/10.1175/2008JAS2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., and M. Mak, 1990: Symbiotic relation between planetary and synoptic-scale waves. J. Atmos. Sci., 47, 29532968, https://doi.org/10.1175/1520-0469(1990)047<2953:SRBPAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, M., S. Yang, H. van den Dool, and V. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus, 59A, 127140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and P. H. Whetton, 2001: Modes of SST variability and the fluctuation of global mean temperature. Climate Dyn., 17, 889901, https://doi.org/10.1007/s003820100152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., S. Lee, and K. L. Swanson, 2002: Storm track dynamics. J. Climate, 15, 21632183, https://doi.org/10.1175/1520-0442(2002)015<02163:STD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiang, J. C. H., and A. R. Friedman, 2012: Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annu. Rev. Earth Planet. Sci., 40, 383412, https://doi.org/10.1146/annurev-earth-042711-105545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chung, E. S., and B. J. Soden, 2017: Hemispheric climate shifts driven by anthropogenic aerosol–cloud interactions. Nat. Geosci., 10, 566571, https://doi.org/10.1038/ngeo2988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chylek, P., C. K. Folland, G. Lesins, and M. K. Dubey, 2010: Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures. Geophys. Res. Lett., 37, L08703, https://doi.org/10.1029/2010GL042793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dima, M., and G. Lohmann, 2010: Evidence for two distinct modes of large-scale ocean circulation changes over the last century. J. Climate, 23, 516, https://doi.org/10.1175/2009JCLI2867.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drost, F., D. Karoly, and K. Braganza, 2012: Communicating global climate change using simple indices: An update. Climate Dyn., 39, 989999, https://doi.org/10.1007/s00382-011-1227-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 20772080, https://doi.org/10.1029/2000GL012745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., T. N. Palmer, and D. E. Parker, 1986: Sahel rainfall and worldwide sea temperatures, 1901–85. Nature, 320, 602607, https://doi.org/10.1038/320602a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C. K., D. E. Parker, A. Colman, and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability, A. Navarra, Ed., Springer-Verlag, 73–102.

    • Crossref
    • Export Citation
  • Friedman, A. R., Y.-T. Hwang, J. C. H. Chiang, and D. M. W. Frierson, 2013: Interhemispheric temperature asymmetry over the twentieth century and in future projections. J. Climate, 26, 54195433, https://doi.org/10.1175/JCLI-D-12-00525.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, B., and L. Wu, 2015: Feedbacks of sea surface temperature to wintertime storm tracks in the North Atlantic. J. Climate, 28, 306323, https://doi.org/10.1175/JCLI-D-13-00719.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Guo, Y., J. Li, J. Feng, F. Xie, C. Sun, and J. Zheng, 2016: The multidecadal variability of the asymmetric mode of the boreal autumn Hadley circulation and its link to the Atlantic multidecadal oscillation. J. Climate, 29, 56255641, https://doi.org/10.1175/JCLI-D-15-0025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 1994: Global Physical Climatology. International Geophysics Series, Vol. 56, Academic Press, 411 pp.

  • Henley, B. J., J. Gergis, D. J. Karoly, S. B. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B., I. James, and G. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 15951612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hotta, D., and H. Nakamura, 2011: On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Climate, 24, 33773401, https://doi.org/10.1175/2010JCLI3910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 16771694, https://doi.org/10.1175/JAS3715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiment with a GCM. J. Climate, 21, 35213532, https://doi.org/10.1175/2007JCLI2146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kennedy, J., N. Rayner, M. Saunby, and S. Millington, 2013: Bringing together measurements of sea surface temperature made in situ with retrievals from satellite instruments to create a globally complete analysis for 1850 onwards, HadISST2. Geophysical Research Abstracts, 15, EGU2013-9723, http://meetingorganizer.copernicus.org/EGU2013/EGU2013-9723.pdf.

    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Climate, 19, 46314637, https://doi.org/10.1175/JCLI3876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613, https://doi.org/10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, B. Wang, F.-F. Jin, W.-J. Lee, and K.-J. Ha, 2011: A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: Local energetics and moisture effect. Climate Dyn., 37, 24552469, https://doi.org/10.1007/s00382-011-1027-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-S., J.-Y. Lee, B. Wang, K.-J. Ha, K.-Y. Heo, F.-F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313327, https://doi.org/10.1007/s00382-011-1188-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661676, https://doi.org/10.1007/BF02915394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., R. Swinbank, R. Grotjahn, and H. Volkert, 2016: Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events. Cambridge University Press, 370 pp.

    • Crossref
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the maximum growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, https://doi.org/10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., J. Li, Y. Li, S. Zhao, F. Zheng, J. Zheng, and Z. Yao, 2017: Influence of the May southern annular mode on the South China Sea summer monsoon. Climate Dyn., https://doi.org/10.1007/s00382-017-3753-3.

    • Search Google Scholar
    • Export Citation
  • Lopez, H., S. Dong, S. Lee, and G. Goni, 2016: Decadal modulations of interhemispheric global atmospheric circulations and monsoons by the South Atlantic meridional overturning circulation. J. Climate, 29, 18311851, https://doi.org/10.1175/JCLI-D-15-0491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 33123327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, J. C., and K. G. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, https://doi.org/10.1038/ngeo1391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., and A. Shimpo, 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams in a reanalysis dataset. J. Climate, 17, 18281844, https://doi.org/10.1175/1520-0442(2004)017<1828:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakamura, H., T. Sampe, Y. Tanimoto, and A. Shimpo, 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth’s Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329–346.

    • Crossref
    • Export Citation
  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S.-P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, S., and J. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, https://doi.org/10.1029/2003GL018381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, X. Yang, and G. Chen, 2013: Baroclinic anomalies associated with the Southern Hemisphere annular mode: Roles of synoptic and low-frequency eddies. Geophys. Res. Lett., 40, 23612366, https://doi.org/10.1002/grl.50396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, Y., Y. Zhang, G. Chen, and X.-Q. Yang, 2016: Delineating the barotropic and baroclinic mechanisms in the midlatitude eddy-driven jet response to lower-tropospheric thermal forcing. J. Atmos. Sci., 73, 429448, https://doi.org/10.1175/JAS-D-15-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishii, K., H. Nakamura, and T. Miyasaka, 2009: Modulations in the planetary wave field induced by upward-propagating Rossby wave packets prior to stratospheric sudden warming events: A case study. Quart. J. Roy. Meteor. Soc., 135, 3952, https://doi.org/10.1002/qj.359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nonaka, M., H. Nakamura, B. Taguchi, N. Komori, A. Y. Kuwano-Yoshida, and K. Takaya, 2009: Air–sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22, 65156535, https://doi.org/10.1175/2009JCLI2960.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., T. Whitworth, and W. D. Nowlin, 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I, 42, 641673, https://doi.org/10.1016/0967-0637(95)00021-W.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 13931408, https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, J. C., 1997: North Atlantic storm track variability and its association with the North Atlantic Oscillation and climate variability of northern Europe. J. Climate, 10, 16351647, https://doi.org/10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., 2006: Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett., 33, L19820, https://doi.org/10.1029/2006GL026882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814, https://doi.org/10.1175/2009JCLI3163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and G. H. Haug, 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, T. A., and Coauthors, 2016: Storm track processes and the opposing influences of climate change. Nat. Geosci., 9, 656664, https://doi.org/10.1038/ngeo2783.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, C., J. P. Li, F.-F. Jin, and R. Q. Ding, 2013: Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environ. Res. Lett., 8, 044006, https://doi.org/10.1088/1748-9326/8/4/044006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006GL028164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taguchi, B., H. Nakamura, M. Nonaka, and S.-P. Xie, 2009: Influence of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm-track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22, 65366560, https://doi.org/10.1175/2009JCLI2910.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, S., K. Nishii, and H. Nakamura, 2016: Vertical structure and energetics of the western Pacific teleconnection pattern. J. Climate, 29, 65976616, https://doi.org/10.1175/JCLI-D-15-0549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tett, S. F. B., and Coauthors, 2002: Estimation of natural and anthropogenic contributions to 20th century temperature change. J. Geophys. Res., 107, 4306, https://doi.org/10.1029/2000JD000028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, J. J. Kennedy, and P. D. Jones, 2010: An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature, 467, 444447, https://doi.org/10.1038/nature09394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal mean flow during a blocking episode using localized Eliassen–Palm flux diagnostics. J. Atmos. Sci., 43, 20702087, https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Z., X. Zhang, Z. Guan, B. Sun, X. Yang, and C. Liu, 2015: An atmospheric origin of the multi-decadal bipolar seesaw. Sci. Rep., 5, 8909, https://doi.org/10.1038/srep08909.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, B., Y. Zhang, X.-Q. Yang, and Y. Nie, 2016: On the role of extratropical air–sea interaction in the persistence of the southern annular mode. Geophys. Res. Lett., 43, 88068814, https://doi.org/10.1002/2016GL070255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, Y., and V. Ramanathan, 2012: Latitudinally asymmetric response of global surface temperature: Implications for regional climate change. Geophys. Res. Lett., 39, L13706, https://doi.org/10.1029/2012GL052116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. T., and Coauthors, 2013: Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci., 70, 11351144, https://doi.org/10.1175/JAS-D-12-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. Li, R. Ding, and J. Feng, 2018: Cross-seasonal influence of the SAM on Southern Hemisphere extratropical SST and its relationship with meridional circulation in CMIP5 models. Int. J. Climatol., 38, 14991519, https://doi.org/10.1002/joc.5262.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1341 876 26
PDF Downloads 386 92 6