Zonal SST Difference as a Potential Environmental Factor Supporting the Longevity of the Madden–Julian Oscillation

Tamaki Suematsu The University of Tokyo, Tokyo, and Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Search for other papers by Tamaki Suematsu in
Current site
Google Scholar
PubMed
Close
and
Hiroaki Miura The University of Tokyo, Tokyo, Japan

Search for other papers by Hiroaki Miura in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An environment favorable for the development of the Madden–Julian oscillation (MJO) was investigated by classifying MJO-like atmospheric patterns as MJO and regionally confined convective (RCC) events. Comparison of MJO and RCC events showed that even when preceded by a major convective suppression event, convective events did not develop into an MJO when large-scale buildup of moist static energy (MSE) was inhibited. The difference in the MSE accumulation between MJO and RCC is related to the contrasting low-frequency basic-state sea surface temperature (SST) pattern; the MJO and RCC events were associated with anomalously warm and cold low-frequency SSTs prevailing over the western to central Pacific, respectively. Differences in the SST anomaly field were absent from the intraseasonal frequency range of 20–60 days. The basic-state SST pattern associated with the MJO was characterized by a positive zonal SST gradient from the Indian Ocean to the western Pacific, which provided a long-standing condition that allowed for sufficient buildup of MSE across the Indian Ocean to the western Pacific via large-scale low-level convergence over intraseasonal and longer time scales. The results of this study suggest the importance of such a basic-state SST, with a long-lasting positive zonal SST gradient, for enhancing convection over a longer than intraseasonal time scale in realizing a complete MJO life cycle.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tamaki Suematsu, tamaki@eps.s.u-tokyo.ac.jp

Abstract

An environment favorable for the development of the Madden–Julian oscillation (MJO) was investigated by classifying MJO-like atmospheric patterns as MJO and regionally confined convective (RCC) events. Comparison of MJO and RCC events showed that even when preceded by a major convective suppression event, convective events did not develop into an MJO when large-scale buildup of moist static energy (MSE) was inhibited. The difference in the MSE accumulation between MJO and RCC is related to the contrasting low-frequency basic-state sea surface temperature (SST) pattern; the MJO and RCC events were associated with anomalously warm and cold low-frequency SSTs prevailing over the western to central Pacific, respectively. Differences in the SST anomaly field were absent from the intraseasonal frequency range of 20–60 days. The basic-state SST pattern associated with the MJO was characterized by a positive zonal SST gradient from the Indian Ocean to the western Pacific, which provided a long-standing condition that allowed for sufficient buildup of MSE across the Indian Ocean to the western Pacific via large-scale low-level convergence over intraseasonal and longer time scales. The results of this study suggest the importance of such a basic-state SST, with a long-lasting positive zonal SST gradient, for enhancing convection over a longer than intraseasonal time scale in realizing a complete MJO life cycle.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tamaki Suematsu, tamaki@eps.s.u-tokyo.ac.jp
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Australian Bureau of Meteorology, 2018: Madden–Julian oscillation: RMM data (updated daily). Commonwealth of Australia, Bureau of Meteorology, accessed 4 April 2018, http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt.

  • Benedict, J. J., and D. A. Randall, 2011: Impacts of idealized air–sea coupling on Madden–Julian oscillation structure in the superparameterized CAM. J. Atmos. Sci., 68, 19902008, https://doi.org/10.1175/JAS-D-11-04.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, D. A. Randall, and M. D. Branson, 2014: Intraseasonal variability in coupled GCMs: The roles of ocean feedbacks and model physics. J. Climate, 27, 49704995, https://doi.org/10.1175/JCLI-D-13-00760.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., N. P. Klingaman, and S. J. Woolnough, 2015: Atmosphere–ocean coupled processes in the Madden–Julian oscillation. Rev. Geophys., 53, 10991154, https://doi.org/10.1002/2014RG000478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and nonpropagating MJO events over Maritime Continent. J. Climate, 28, 84308449, https://doi.org/10.1175/JCLI-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler, 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54, 23732386, https://doi.org/10.1175/1520-0469(1997)054<2373:TFBECA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden–Julian oscillation during austral summer. J. Climate, 12, 25382550, https://doi.org/10.1175/1520-0442(1999)012<2538:IVOTMJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hirata, F. E., P. J. Webster, and V. E. Toma, 2013: Distinct manifestations of austral summer tropical intraseasonal oscillations. Geophys. Res. Lett., 40, 33373341, https://doi.org/10.1002/grl.50632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345364, https://doi.org/10.1175/1520-0442(2003)016<0345:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Inness, P. M., J. M. Slingo, E. Guilyardi, and J. Cole, 2003: Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365382, https://doi.org/10.1175/1520-0442(2003)016<0365:SOTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Izumo, T., S. Masson, J. Vialard, C. de Boyer Montegut, S. K. Behera, G. Madec, K. Takahashi, and T. Yamagata, 2010: Low and high frequency Madden–Julian oscillations in austral summer: Interannual variations. Climate Dyn., 35, 669683, https://doi.org/10.1007/s00382-009-0655-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J. S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden-Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., and S. J. Woolnough, 2014: The role of air-sea coupling in the simulation of the Madden-Julian oscillation in the Hadley Centre model. Quart. J. Roy. Meteor. Soc., 140, 22722286, https://doi.org/10.1002/qj.2295.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, and P. Bechtold, 2013: Large-scale distinctions between MJO and non-MJO convective initiation over the tropical Indian Ocean. J. Atmos. Sci., 70, 26962712, https://doi.org/10.1175/JAS-D-13-029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, https://doi.org/10.1073/pnas.0903367106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765, https://doi.org/10.1126/science.1148443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miura, H., T. Suematsu, and T. Nasuno, 2015: An ensemble hindcast of the Madden-Julian oscillation during the CINDY2011/DYNAMO field campaign and influence of seasonal variation of sea surface temperature. J. Meteor. Soc. Japan, 93A, 115137, https://doi.org/10.2151/jmsj.2015-055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and A. J. Matthews, 2007: Observed changes in the lifetime and amplitude of the Madden–Julian Oscillation associated with interannual ENSO sea surface temperature anomalies. J. Climate, 20, 26592674, https://doi.org/10.1175/JCLI4230.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., and W. Han, 2005: Influence of the Indian Ocean dipole on atmospheric subseasonal variability. J. Climate, 18, 38913909, https://doi.org/10.1175/JCLI3510.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shinoda, T., H. H. Hendon, and J. Glick, 1998: Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian Oceans. J. Climate, 11, 16851702, https://doi.org/10.1175/1520-0442(1998)011<1685:IVOSFA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., D. E. Waliser, and A. J. Majda, 2015: Precursor environmental conditions associated with the termination of Madden–Julian oscillation events. J. Atmos. Sci., 72, 19081931, https://doi.org/10.1175/JAS-D-14-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, H., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29, 113129, https://doi.org/10.1007/s00382-007-0234-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694, https://doi.org/10.1175/1520-0493(2001)129<2677:RTMAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, https://doi.org/10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, J., W. Wang, and A. Kumar, 2017: Simulations of MJO propagation across the Maritime Continent: Impacts of SST feedback. J. Climate, 30, 16891704, https://doi.org/10.1175/JCLI-D-16-0367.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 618 178 20
PDF Downloads 453 162 11