Circulation Features Associated with the Record-Breaking Rainfall over South China in June 2017

Jianqi Sun Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jianqi Sun in
Current site
Google Scholar
PubMed
Close
,
Jing Ming Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Jing Ming in
Current site
Google Scholar
PubMed
Close
,
Mengqi Zhang Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Mengqi Zhang in
Current site
Google Scholar
PubMed
Close
, and
Shui Yu Nansen-Zhu International Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Shui Yu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In June 2017, south China suffered from intense rainfall that broke the record spanning the previous 70 years. In this study, the large-scale circulations associated with the south China June rainfall are analyzed. The results show that the anomalous Pacific–Japan (PJ) pattern is a direct influence on south China June rainfall or East Asian early summer rainfall. In addition, the Australian high was the strongest in June 2017 during the past 70 years, which can increase the equatorward flow to northern Australia and activate convection over the Maritime Continent. Enhanced convection over the Maritime Continent can further enhance local meridional circulation along East Asia, engendering downward motion over the tropical western North Pacific and enhancing the western Pacific subtropical high (WPSH) and upward motion over south China, which increases the rainfall therein. In addition, a strong wave train pattern associated with North Atlantic air–sea interaction was observed in June 2017 at Northern Hemispheric mid- to high latitudes; it originated from the North Atlantic and propagated eastward to East Asia, resulting in an anomalous anticyclone over the Mongolian–Baikal Lake region. This anomalous anticyclone produced strong northerly winds over East Asia that encountered the southerly associated with the WPSH over south China, thereby favoring intense rainfall over the region. Case studies of June 2017 and climate research based on data during 1979–2017 and 1948–2017 indicate that the extremities of the atmospheric circulation over south Europe and Australian high and their coupling with the PJ pattern could be responsible for the record-breaking south China rainfall in June 2017.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn

Abstract

In June 2017, south China suffered from intense rainfall that broke the record spanning the previous 70 years. In this study, the large-scale circulations associated with the south China June rainfall are analyzed. The results show that the anomalous Pacific–Japan (PJ) pattern is a direct influence on south China June rainfall or East Asian early summer rainfall. In addition, the Australian high was the strongest in June 2017 during the past 70 years, which can increase the equatorward flow to northern Australia and activate convection over the Maritime Continent. Enhanced convection over the Maritime Continent can further enhance local meridional circulation along East Asia, engendering downward motion over the tropical western North Pacific and enhancing the western Pacific subtropical high (WPSH) and upward motion over south China, which increases the rainfall therein. In addition, a strong wave train pattern associated with North Atlantic air–sea interaction was observed in June 2017 at Northern Hemispheric mid- to high latitudes; it originated from the North Atlantic and propagated eastward to East Asia, resulting in an anomalous anticyclone over the Mongolian–Baikal Lake region. This anomalous anticyclone produced strong northerly winds over East Asia that encountered the southerly associated with the WPSH over south China, thereby favoring intense rainfall over the region. Case studies of June 2017 and climate research based on data during 1979–2017 and 1948–2017 indicate that the extremities of the atmospheric circulation over south Europe and Australian high and their coupling with the PJ pattern could be responsible for the record-breaking south China rainfall in June 2017.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jianqi Sun, sunjq@mail.iap.ac.cn
Save
  • Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and W. Zhou, 2005: PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett., 32, L08810, https://doi.org/10.1029/2004GL022015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. Zhang, and T. Li, 2000a: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325, https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C. P., Y. Zhang, and T. Li, 2000b: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J. Climate, 13, 43264340, https://doi.org/10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. P., J. Q. Sun, and K. Fan, 2012a: Decadal features of heavy rainfall events in eastern China. Acta Meteor. Sin., 26, 289303, https://doi.org/10.1007/s13351-012-0303-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. P., J. Q. Sun, X. L. Chen, and W. Zhou, 2012b: CGCM projections of heavy rainfall events in China. Int. J. Climatol., 32, 441450, https://doi.org/10.1002/joc.2278.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y. H., Z. Y. Wang, and Y. Sun, 2008: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol., 28, 11391161, https://doi.org/10.1002/joc.1615.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, W. S., L. Y. Song, Y. Li, and J. Y. Mao, 2013: Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. J. Geophys. Res., 118, 13 00813 021, https://doi.org/10.1002/2013JD019862.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fan, K., 2006: Atmospheric circulation in southern Hemisphere and summer rainfall over Yangtze River valley. Chin. J. Geophys., 49, 672679.

  • Fan, K., and H. J. Wang, 2004: Antarctic Oscillation and the dust weather frequency in North China. Geophys. Res. Lett., 31, L10201, https://doi.org/10.1029/2003GL018501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and R. W. Reynolds, 1983: Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr., 13, 11311145, https://doi.org/10.1175/1520-0485(1983)013<1131:TADMFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, H., F. Xue, and H. J. Wang, 2004: Influence of interannual variability of Antarctic oscillation on Mei-yu along the Yangtze and Huaihe River valley and its importance to prediction. Chin. Sci. Bull., 48, 6167, https://doi.org/10.1360/03wd0452.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D. Y., and C. H. Ho, 2003: Arctic oscillation signals in the East Asian summer monsoon. J. Geophys. Res., 108, 4066, https://doi.org/10.1029/2002JD002193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., M. Latif, N. Keenlyside, W. Park, and K. P. Koltermann, 2013: North Atlantic Ocean control on surface heat flux at multidecadal timescales. Nature, 499, 464467, https://doi.org/10.1038/nature12268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. H., J. H. Kim, H. S. Kim, C. H. Sui, and D. Y. Gong, 2005: Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. J. Geophys. Res., 110, D19104, https://doi.org/10.1029/2005JD005766.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B. Y., and Coauthors, 2015: Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and Y. F. Wu, 1989: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci., 6, 2132, https://doi.org/10.1007/BF02656915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243256, https://doi.org/10.2151/jmsj1965.70.1B_243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., R. H. Zhang, and Q. Y. Zhang, 2000: The 1997/98 ENSO cycle and its impact on summer climate anomalies in East Asian. Adv. Atmos. Sci., 17, 348362, https://doi.org/10.1007/s00376-000-0028-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561580, https://doi.org/10.2151/jmsj.87.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 22332256, https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lai, A. W. C., M. Herzog, and H. F. Graf, 2015: Two key parameters for the El Niño continuum: Zonal wind anomalies and Western Pacific subsurface potential temperature. Climate Dyn., 45, 34613480, https://doi.org/10.1007/s00382-015-2550-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, https://doi.org/10.1029/2005GL022860.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., and Y. C. Zhang, 2014: Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during the mei-yu season. J. Climate, 27, 66606672, https://doi.org/10.1175/JCLI-D-14-00021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z. D., and R. Y. Lu, 2008: Abrupt northward jump of the East Asian upper-tropospheric jet stream in mid-summer. J. Meteor. Soc. Japan, 86, 857866, https://doi.org/10.2151/jmsj.86.857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, R. Y., 2004: Associations among the components of the East Asian summer monsoon system in the meridional direction. J. Meteor. Soc. Japan, 82, 155165, https://doi.org/10.2151/jmsj.82.155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, A. J., D. R. Cayan, T. P. Barnett, N. E. Graham, and J. M. Oberhuber, 1994: Interdecadal variability of the Pacific Ocean: Model response to observed heat flux and wind stress anomalies. Climate Dyn., 9, 287302, https://doi.org/10.1007/BF00204744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, S., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, https://doi.org/10.1029/2003GL018381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390, https://doi.org/10.2151/jmsj1965.65.3_373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orsolini, Y. J., L. Zhang, D. H. W. Peters, K. Fraedrich, X. H. Zhu, A. Schneidereit, and B. van den Hurk, 2015: Extreme precipitation events over north China in August 2010 and their link to eastward-propagating wave-trains across Eurasia: Observations and monthly forecasting. Quart. J. Roy. Meteor. Soc., 141, 30973105, https://doi.org/10.1002/qj.2594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qiang, X. M., and X. Q. Yang, 2013: Relationship between the first rainy seasonal precipitation anomaly in south China and the sea surface temperature anomaly in the Pacific (in Chinese). Chin. J. Geophys., 56, 25832593.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, X. S., M. Kimoto, A. Sumi, A. Numaguti, and J. Matsumoto, 2001: Simulation of the 1998 East Asian summer monsoon by the CCSR/NIES AGCM. J. Meteor. Soc. Japan, 79, 741757, https://doi.org/10.2151/jmsj.79.741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Q., 2010: Possible impact of the boreal spring Antarctic Oscillation on the North American summer monsoon. Atmos. Oceanic Sci. Lett., 3, 232236, https://doi.org/10.1080/16742834.2010.11446870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Q., and H. J. Wang, 2012: Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J. Geophys. Res. Atmos., 117, D08110, https://doi.org/10.1029/2012JD017482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Q., H. J. Wang, and W. Yuan, 2008: Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J. Geophys. Res., 113, D15107, https://doi.org/10.1029/2007JD009626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Q., H. J. Wang, and W. Yuan, 2009: A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall. Int. J. Climatol., 29, 12761284, https://doi.org/10.1002/joc.1773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. Q., H. J. Wang, and W. Yuan, 2010: Linkage of the boreal spring Antarctic Oscillation to the West African summer monsoon. J. Meteor. Soc. Japan, 88, 1528, https://doi.org/10.2151/jmsj.2010-102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, X. Y., and Z. B. Sun, 2005: Effect of IOD on East Asian circulation and precipitation. J. Nanjing Inst. Meteor., 28, 316322.

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asia teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., and X. Wang, 2013: Classifying El Niño Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J. Climate, 26, 13221338, https://doi.org/10.1175/JCLI-D-12-00107.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., and K. Fan, 2005: Central-north China precipitation as reconstructed from the Qing dynasty: Signal of the Antarctic atmospheric oscillation. Geophys. Res. Lett., 32, L24705, https://doi.org/10.1029/2005GL024562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., and K. Fan, 2007: Relationship between the Antarctic Oscillation in the western North Pacific typhoon frequency. Chin. Sci. Bull., 52, 561565, https://doi.org/10.1007/s11434-007-0040-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, H. J., T. Matsuno, and Y. Kurihara, 2000: Ensemble hindcast experiments for the flood period over China in 1998 by use of the CCSR/NIES atmospheric general circulation model. J. Meteor. Soc. Japan, 78, 357365, https://doi.org/10.2151/jmsj1965.78.4_357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Climate, 17, 46744691, https://doi.org/10.1175/JCLI-3228.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., K. Yang, and R. H. Zhang, 2009a: Eurasian snow cover variability and its association with summer rainfall in China. Adv. Atmos. Sci., 26, 3144, https://doi.org/10.1007/s00376-009-0031-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, B. Y., R. H. Zhang, B. Wang, and R. C’Arrigo, 2009b: On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett., 36, L09501, https://doi.org/10.1029/2009GL037299.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R. G., Z. P. Wen, S. Yang, and Y. Li, 2010: An interdecadal change in southern China summer rainfall around 1992/93. J. Climate, 23, 23892403, https://doi.org/10.1175/2009JCLI3336.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xue, F., H. J. Wang, and J. H. He, 2004: Interannual variability of Mascarene high and Australian high and their influences on East Asian summer monsoon. J. Meteor. Soc. Japan, 82, 11731186, https://doi.org/10.2151/jmsj.2004.1173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yao, C., S. Yang, W. H. Qian, Z. Lin, and M. Wen, 2008: Regional summer precipitation events in Asia and their changes in the past decades. J. Geophys. Res., 113, D17107, https://doi.org/10.1029/2007JD009603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yim, S. Y., B. Wang, and W. Xing, 2014: Prediction of early summer rainfall over south China by a physical-empirical model. Climate Dyn., 43, 18831891, https://doi.org/10.1007/s00382-013-2014-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Q., J. F. Li, V. P. Singh, C.-Y. Xu, and J. Deng, 2013: Influence of ENSO on precipitation in the East River basin, south China. J. Geophys. Res. Atmos., 118, 22072219, https://doi.org/10.1002/jgrd.50279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 4962, https://doi.org/10.2151/jmsj1965.74.1_49.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R. H., A. Sumi, and M. Kimoto, 1999: A diagnostic study of the impact of El Niño on the precipitation in China. Adv. Atmos. Sci., 16, 229241, https://doi.org/10.1007/BF02973084.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 10041020, https://doi.org/10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. C., X. Y. Kuang, W. D. Guo, and T. Zhou, 2006: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia. Geophys. Res. Lett., 33, L11708, https://doi.org/10.1029/2006GL026377.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, W., C. Y. Li, and J. C. L. Chan, 2006: The interdecadal variations of the summer monsoon rainfall over south China. Meteor. Atmos. Phys., 93, 165175, https://doi.org/10.1007/s00703-006-0184-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y. L., 2012: Variations of the summer Somali and Australia cross-equatorial flows and the implications for the Asian summer monsoon. Adv. Atmos. Sci., 29, 509518, https://doi.org/10.1007/s00376-011-1120-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1057 572 119
PDF Downloads 494 92 11