Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region

Weixin Xu Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Weixin Xu in
Current site
Google Scholar
PubMed
Close
and
Steven A. Rutledge Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the convective cloud population, precipitation microphysics, and lightning activity associated with the boreal summer intraseasonal oscillation (BSISO) over the South China Sea (SCS) and surrounding landmasses. SCS rainfall shows a marked 30–60-day intraseasonal variability. This variability is less evident over land. The population of mesoscale convective systems (MCSs) and the stratiform rain fraction over the SCS, Philippines, and Indochina increase remarkably after the onset of BSISO. Convection over the SCS during inactive periods exhibits a trimodal population including shallow cumulus, congestus, and deep convection, mirroring the situation over tropical open oceans. The shallow mode is absent over land. Shallow cumulus clouds rapidly transition to congestus clouds over the SCS under active BSISO conditions. Over land, deep convection and lightning lead total rainfall and MCSs by 2–3 BSISO phases, whereas they are somewhat in phase over the SCS. Although convective instability over the SCS is larger during active periods compared to inactive periods, variability in convective intensity and precipitation microphysics is minimal, with active periods showing only higher frequency of moderate ice scattering and 30-dBZ heights extending to −10°C. Over the Philippines and Indochina, inactive phases exhibit substantially stronger ice scattering signatures, robust mixed-phase microphysics, and higher lightning flash rates, possibly due to greater convective instability and a stronger convective diurnal cycle. Total rainfall, convective environments, and convective structures over Borneo are all out of phase with that over the Philippines and Indochina, while southern China shows little BSISO variability on convective intensity and lightning frequency.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Weixin Xu, wxinxu@atmos.colostate.edu

Abstract

This study investigates the convective cloud population, precipitation microphysics, and lightning activity associated with the boreal summer intraseasonal oscillation (BSISO) over the South China Sea (SCS) and surrounding landmasses. SCS rainfall shows a marked 30–60-day intraseasonal variability. This variability is less evident over land. The population of mesoscale convective systems (MCSs) and the stratiform rain fraction over the SCS, Philippines, and Indochina increase remarkably after the onset of BSISO. Convection over the SCS during inactive periods exhibits a trimodal population including shallow cumulus, congestus, and deep convection, mirroring the situation over tropical open oceans. The shallow mode is absent over land. Shallow cumulus clouds rapidly transition to congestus clouds over the SCS under active BSISO conditions. Over land, deep convection and lightning lead total rainfall and MCSs by 2–3 BSISO phases, whereas they are somewhat in phase over the SCS. Although convective instability over the SCS is larger during active periods compared to inactive periods, variability in convective intensity and precipitation microphysics is minimal, with active periods showing only higher frequency of moderate ice scattering and 30-dBZ heights extending to −10°C. Over the Philippines and Indochina, inactive phases exhibit substantially stronger ice scattering signatures, robust mixed-phase microphysics, and higher lightning flash rates, possibly due to greater convective instability and a stronger convective diurnal cycle. Total rainfall, convective environments, and convective structures over Borneo are all out of phase with that over the Philippines and Indochina, while southern China shows little BSISO variability on convective intensity and lightning frequency.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Weixin Xu, wxinxu@atmos.colostate.edu
Save
  • Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 27262748, https://doi.org/10.1175/JAS3504.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aves, S. L., and R. H. Johnson, 2008: The diurnal cycle of convection over the northern South China Sea. J. Meteor. Soc. Japan, 86, 919934, https://doi.org/10.2151/jmsj.86.919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and E. J. Zipser, 2015: Differences in size spectra of electrified storms over land and ocean. Geophys. Res. Lett., 42, 68446851, https://doi.org/10.1002/2015GL065264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bang, S. D., and E. J. Zipser, 2016: Seeking reasons for the differences in size spectra of electrified storms over land and ocean. J. Geophys. Res. Atmos., 121, 90489068, https://doi.org/10.1002/2016JD025150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boccippio, D. J., W. J. Koshak, and R. J. Blakeslee, 2002: Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted diurnal variability. J. Atmos. Oceanic Technol., 19, 13181332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C., Y. Ding, N.-C. Lau, R. H. Johnson, B. Wang, and T. Yasunari, 2011: The Global Monsoon System: Research and Forecast. 2nd ed. World Scientific Series on Asia-Pacific Weather and Climate, Vol. 5, World Scientific, 590 pp.

    • Crossref
    • Export Citation
  • Chen, G. T.-J., 2004: Research on the phenomena of Meiyu during the past quarter century: An overview. The East Asian Monsoon, C.-P. Chang, Ed., World Scientific, 357–403.

    • Crossref
    • Export Citation
  • Chen, Y., and P. Zhai, 2017: Simultaneous modulations of precipitation and temperature extremes in southern parts of China by the boreal summer intraseasonal oscillation. Climate Dyn., 49, 33633381, https://doi.org/10.1007/s00382-016-3518-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christian, H. J., 1999: Optical detection of lightning from space. Proc. 11th Int. Conf. on Atmospheric Electricity (NASA/CP-1999-209261), Guntersville, AL, NASA, 715–718.

  • Christian, H. J., and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chu, J.-E., S. N. Hameed, and K.-J. Ha, 2012: Nonlinear, intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps. J. Climate, 25, 69756988, https://doi.org/10.1175/JCLI-D-11-00512.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and R. H. Johnson, 2006: Contrasting characteristics of convection over the northern and southern South China Sea during SCSMEX. Mon. Wea. Rev., 134, 10411062, https://doi.org/10.1175/MWR3113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., and S. A. Rutledge, 1998: Vertical motion, diabatic heating and rainfall characteristics in north Australia convective systems. Quart. J. Roy. Meteor. Soc., 124, 11331162, https://doi.org/10.1002/qj.49712454806.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Peterson, L. D. Carey, S. A. Rutledge, and M. A. F. Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, https://doi.org/10.1029/2000JD000264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841, https://doi.org/10.1002/qj.493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 19731992, https://doi.org/10.1175/JCLI-D-12-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q.-H., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q.-H., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20, 37513767, https://doi.org/10.1175/JCLI4221.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q.-H., and B. Wang, 2009: Predicting extreme phases of the India summer monsoon. J. Climate, 22, 346363, https://doi.org/10.1175/2008JCLI2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Y., and J. C.-L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142, https://doi.org/10.1007/s00703-005-0125-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, https://doi.org/10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, J., H. Lin, L. You, and S. Chen, 2016: Monitoring early-flood season intraseasonal oscillations and persistent heavy rainfall in South China. Climate Dyn., 47, 38453861, https://doi.org/10.1007/s00382-016-3045-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gentemann, C. L., T. Meissner, and F. J. Wentz, 2010: Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens., 48, 10091018, https://doi.org/10.1109/TGRS.2009.2030322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., 2005: South Asian monsoon. Intraseasonal Variability of the Atmosphere–Ocean Climate System, K. M. Lau and D. E. Waliser, Eds., Springer Praxis, 19–61.

    • Crossref
    • Export Citation
  • Ho, C.-H., M.-S. Park, Y.-S. Choi, and Y. N. Takayabu, 2008: Relationship between intraseasonal oscillation and diurnal variation of summer rainfall over the South China Sea. Geophys. Res. Lett., 35, L03701, https://doi.org/10.1029/2007GL031962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollars, S., Q. Fu, J. Comstock, and T. Ackerman, 2004: Comparison of cloud-top height retrievals from ground-based 35 GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmos. Res., 72, 169186, https://doi.org/10.1016/j.atmosres.2004.03.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoyos, C. D., and P. J. Webster, 2007: The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Climate, 20, 44024424, https://doi.org/10.1175/JCLI4252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 14031412, https://doi.org/10.1002/joc.4433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260, https://doi.org/10.1175/JCLI3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2002: Characteristics of the 1998 summer monsoon onset over the northern South China Sea. J. Meteor. Soc. Japan, 80, 561578, https://doi.org/10.2151/jmsj.80.561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, https://doi.org/10.1175/JAS-D-13-065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., S. L. Aves, P. E. Ciesielski, and T. D. Keenan, 2005: Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon. Mon. Wea. Rev., 133, 131148, https://doi.org/10.1175/MWR-2843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., C.-H. Ho, Y.-K. Lim, and K.-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322340, https://doi.org/10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 19892000, https://doi.org/10.1007/s00382-011-1159-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., and I.-S. Kang, 2008: The impact of ocean–atmosphere coupling on the predictability of boreal summer intraseasonal oscillation. Climate Dyn., 31, 859870, https://doi.org/10.1007/s00382-008-0409-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, https://doi.org/10.1175/JCLI3981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2008: Seasonal persistence and propagation of intraseasonal patterns over the Indian monsoon region. Climate Dyn., 30, 353369, https://doi.org/10.1007/s00382-007-0300-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, K. M., and Coauthors, 2000: A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bull. Amer. Meteor. Soc., 81, 12611270, https://doi.org/10.1175/1520-0477(2000)081<1261:AROTFO>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, Q. Ding, K.-J. Ha, J.-B. Ahh, A. Kumar, B. Stern, and O. Alves, 2011: How predictable is the Northern Hemisphere summer upper-tropospheric circulation? Climate Dyn., 37, 11891203, https://doi.org/10.1007/s00382-010-0909-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J.-Y., B. Wang, M. C. Wheeler, X. Fu, D. E. Waliser, and I.-S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493509, https://doi.org/10.1007/s00382-012-1544-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S., J. Moon, B. Wang, and H. Kim, 2017: Subseasonal prediction of extreme precipitation over Asia: Boreal summer intraseasonal oscillation perspective. J. Climate, 30, 28492865, https://doi.org/10.1175/JCLI-D-16-0206.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, C., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor., 47, 27122728, https://doi.org/10.1175/2008JAMC1890.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, https://doi.org/10.1175/JCLI-3212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 24172437, https://doi.org/10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., B. Wang, K.-J. Ha, and J.-Y. Lee, 2013: Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation. Climate Dyn., 40, 27612774, https://doi.org/10.1007/s00382-012-1394-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 40874106, https://doi.org/10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, M.-S., Y.-S. Choi, C.-H. Ho, C.-H. Sui, S. K. Park, and M.-H. Ahn, 2007: Regional cloud characteristics over the tropical northwestern Pacific as revealed by Tropical Rainfall Measuring Mission (TRMM) precipitation radar and TRMM Microwave Imager. J. Geophys. Res., 112, D05209, https://doi.org/10.1029/2006JD007437.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observation from TRMM. J. Climate, 14, 35663586, https://doi.org/10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. A. Rutledge, and R. E. Orville, 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms. Mon. Wea. Rev., 124, 602620, https://doi.org/10.1175/1520-0493(1996)124<0602:CTGLOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., R. C. Cifelli, S. A. Rutledge, B. S. Ferrier, and B. F. Smull, 1999: Shipborne dual-Doppler operations during TOGA COARE: Integrated observations of storm kinematics and electrification. Bull. Amer. Meteor. Soc., 80, 8198, https://doi.org/10.1175/1520-0477(1999)080<0081:SDDODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate, 15, 12781294, https://doi.org/10.1175/1520-0442(2002)015<1278:TOOIVI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. Atmos., 120, 39063919, https://doi.org/10.1002/2014JD022934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., and S. A. Rutledge, 1998: Convection in TOGA COARE: Horizontal scale, morphology, and rainfall production. J. Atmos. Sci., 55, 27152729, https://doi.org/10.1175/1520-0469(1998)055<2715:CITCHS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476, https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabeerali, C. T., A. Ramu Dandi, A. Dhakate, K. Salunke, S. Mahapatra, and S. A. Rao, 2013: Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J. Geophys. Res. Atmos., 118, 44014420, https://doi.org/10.1002/jgrd.50403.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saxen, T. R., and S. A. Rutledge, 2000: Surface rainfall–cold cloud fractional coverage relationship in TOGA COARE: A function of vertical wind shear. Mon. Wea. Rev., 128, 407415, https://doi.org/10.1175/1520-0493(2000)128<0407:SRCCFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., E. D. Maloney, G. Bellon, and D. M. Frierson, 2010: Surface fluxes and tropical intraseasonal variability: A reassessment. J. Adv. Model. Earth Syst., 2, 2, https://doi.org/10.3894/JAMES.2010.2.2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., H. G. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, https://doi.org/10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasan, J., S. Gadgil, and P. J. Webster, 1993: Meridional propagation of large-scale monsoon convective zones. Meteor. Atmos. Phys., 52, 1535, https://doi.org/10.1007/BF01025750.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolz, D. C., S. A. Rutledge, and J. R. Pierce, 2015: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. J. Geophys. Res. Atmos., 120, 62076231, https://doi.org/10.1002/2014JD023033.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Takayabu, Y. N., J. Yokomori, and K. Yoneyama, 2006: A diagnostic study on interactions between atmospheric thermodynamic structure and cumulus convection over the tropical western Pacific Ocean and over the Indochina Peninsula. J. Meteor. Soc. Japan, 84A, 151169, https://doi.org/10.2151/jmsj.84A.151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tao, S., and L. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60–92.

  • Virts, K. S., and R. A. Houze, 2016: Seasonal and intraseasonal variability of mesoscale convective systems over the South Asian monsoon region. J. Atmos. Sci., 73, 47534774, https://doi.org/10.1175/JAS-D-16-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 14071421, https://doi.org/10.1175/1520-0450(1991)030<1407:IWPEAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer, 203–258.

    • Crossref
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423446, https://doi.org/10.1007/s00382-003-0337-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. Lucas, 2004: Indo-Pacific Ocean response to atmospheric intraseasonal variability. Part II: Boreal summer and the intraseasonal oscillation. J. Geophys. Res., 109, C03030, https://doi.org/10.1029/2003JC002002.

    • Search Google Scholar
    • Export Citation
  • Wang, B., 2005: Theory. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer, 307–360.

    • Crossref
    • Export Citation
  • Wang, B., and X. Xie, 1997: A model for boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 7286, https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., 2004: Evolution and structure of the mesoscale convection and its environment: A case study during the early onset of Southeast Asian summer monsoon. Mon. Wea. Rev., 132, 11041120, https://doi.org/10.1175/1520-0493(2004)132<1104:EASOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J.-J., and L. D. Carey, 2005: The development and structure of an oceanic squall-line system during the South China Sea Monsoon Experiment. Mon. Wea. Rev., 133, 15441561, https://doi.org/10.1175/MWR2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 21102124, https://doi.org/10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, https://doi.org/10.1016/S1631-0705(02)01407-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 13861395, https://doi.org/10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, https://doi.org/10.1029/2001JD000380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., and Y. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and E. J. Zipser, 2012: Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett., 39, L07802, https://doi.org/10.1029/2012GL051242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, https://doi.org/10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351, https://doi.org/10.2151/jmsj1965.70.1B_319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., and X. Qie, 2008: Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. Geophys. Res. Lett., 113, D14101, https://doi.org/10.1029/2007JD009382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and K. R. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 17511759, https://doi.org/10.1175/1520-0493(1994)122<1751:TVPORR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 735 264 16
PDF Downloads 423 60 6