Southern Hemisphere Origins for Interannual Variations of Snow Cover over the Western Tibetan Plateau in Boreal Summer

Juan Dou Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Juan Dou in
Current site
Google Scholar
PubMed
Close
and
Zhiwei Wu Institute of Atmospheric Sciences, Fudan University, Shanghai, China

Search for other papers by Zhiwei Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have been devoted to revealing the potential factors that can contribute to the TPSC interannual variability, especially during boreal summer. This study finds that the May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the interannual variations in western TPSC during boreal summer. Observational analysis and numerical experiments manifest that the signal of the May SAM can be “prolonged” by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere–ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal–vertical circulation. Subsequently, a tropical dipole rainfall (TDR) mode is induced with precipitation anomalies between the tropical western Indian Ocean and the eastern Indian Ocean–Maritime Continent. Rossby wave ray tracing diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, can propagate northward into the western TP. As a response, abnormal cyclone (or anticyclone) and upward (or downward) movement are triggered over the western TP, providing favorable dynamical conditions for more (or less) TPSC. Moreover, the strong May SAM is usually followed by a cold air temperature anomaly over the western TP in summer, which is unfavorable for snow-cover melting, and vice versa. In brief, the IOT SSTA plays an “ocean bridge” role and the TDR mode plays an “atmosphere bridge” role in the process of the May SAM impacting the following summer TPSC variability. The results may provide new insight into the cross-equatorial propagation of the SAM influence.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Zhiwei Wu, zhiweiwu@fudan.edu.cn

Abstract

The climate response to the Tibetan Plateau (TP) snow cover (TPSC) has been receiving extensive concern. However, relatively few studies have been devoted to revealing the potential factors that can contribute to the TPSC interannual variability, especially during boreal summer. This study finds that the May Southern Hemisphere (SH) annular mode (SAM), the dominating mode of atmospheric circulation variability in the SH extratropics, exhibits a significant positive relationship with the interannual variations in western TPSC during boreal summer. Observational analysis and numerical experiments manifest that the signal of the May SAM can be “prolonged” by a meridional Indian Ocean tripole (IOT) sea surface temperature anomaly (SSTA) via atmosphere–ocean interaction. The IOT SSTA pattern persists into the following summer and excites anomalous local-scale zonal–vertical circulation. Subsequently, a tropical dipole rainfall (TDR) mode is induced with precipitation anomalies between the tropical western Indian Ocean and the eastern Indian Ocean–Maritime Continent. Rossby wave ray tracing diagnosis reveals that the wave energies, generated by the latent heat release of the TDR mode, can propagate northward into the western TP. As a response, abnormal cyclone (or anticyclone) and upward (or downward) movement are triggered over the western TP, providing favorable dynamical conditions for more (or less) TPSC. Moreover, the strong May SAM is usually followed by a cold air temperature anomaly over the western TP in summer, which is unfavorable for snow-cover melting, and vice versa. In brief, the IOT SSTA plays an “ocean bridge” role and the TDR mode plays an “atmosphere bridge” role in the process of the May SAM impacting the following summer TPSC variability. The results may provide new insight into the cross-equatorial propagation of the SAM influence.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Prof. Zhiwei Wu, zhiweiwu@fudan.edu.cn
Save
  • Adler, R. F., and Coauthors, 2003: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 11471167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and J. Shukla, 1999: Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. J. Climate, 12, 31173132, https://doi.org/10.1175/1520-0442(1999)012<3117:RBESCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bamzai, A. S., and L. Marx, 2000: COLA AGCM simulation of the effect of anomalous spring snow over Eurasia on the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 126, 25752584, https://doi.org/10.1002/qj.49712656811.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, and E. Roeckner, 1988: The effect of Eurasian snow cover on global climate. Science, 239, 504507, https://doi.org/10.1126/science.239.4839.504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., L. Dümenil, U. Schlese, E. Roeckner, and M. Latif, 1989: The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behringer, D. W., M. Ji, and A. Leetmaa, 1998: An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system. Mon. Wea. Rev., 126, 10131021, https://doi.org/10.1175/1520-0493(1998)126<1013:AICMFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 11591174, https://doi.org/10.1175/1520-0442(2002)015<1159:MOIVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., P. van Rensch, S. Borlace, and T. Cowan, 2011: Does the southern annular mode contribute to the persistence of the multidecade-long drought over southwest Western Australia? Geophys. Res. Lett., 38, L14712, https://doi.org/10.1029/2011GL047943.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and D. Rind, 1991: The effect of snow cover on the climate. J. Climate, 4, 689706, https://doi.org/10.1175/1520-0442(1991)004<0689:TEOSCO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dou, J., Z. Wu, and Y. Zhou, 2017: Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall. Climate Dyn., 49, 12571269, https://doi.org/10.1007/s00382-016-3380-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duan, A., and G. Wu, 2003: The main spatial heating patterns over the Tibetan Plateau in July and the corresponding distributions of circulation and precipitation over eastern Asia. Acta Meteor. Sin., 61, 447456.

    • Search Google Scholar
    • Export Citation
  • Estilow, T. W., A. H. Young, and D. A. Robinson, 2015: A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data, 7, 137142, https://doi.org/10.5194/essd-7-137-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gong, D., and S. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459462, https://doi.org/10.1029/1999GL900003.

  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 30433057, https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., D. W. J. Thompson, and M. C. Wheeler, 2007: Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. J. Climate, 20, 24522467, https://doi.org/10.1175/JCLI4134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, M., A. Kiem, and D. C. Verdon-Kidd, 2012: The southern annular mode: A comparison of indices. Hydrol. Earth Syst. Sci., 16, 967982, https://doi.org/10.5194/hess-16-967-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., A. J. Simmons, and D. G. Andrews, 1977: Energy dispersion in a barotropic atmosphere. Quart. J. Roy. Meteor. Soc., 103, 553567, https://doi.org/10.1002/qj.49710343802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., 1989: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation events. J. Climate, 2, 12391252, https://doi.org/10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karoly, D. J., P. Hope, and P. D. Jones, 1996: Decadal variations of the Southern Hemisphere circulation. Int. J. Climatol., 16, 723738, https://doi.org/10.1002/(SICI)1097-0088(199607)16:7<723::AID-JOC54>3.0.CO;2-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y. J., and J. P. Li, 2012: Propagation of planetary waves in the horizontal non-uniform basic flow (in Chinese). Chin. J. Geophys., 55, 361371.

    • Search Google Scholar
    • Export Citation
  • Li, Y. J., J. P. Li, F. F. Jin, and S. Zhao, 2015: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow. J. Atmos. Sci., 72, 32333256, https://doi.org/10.1175/JAS-D-14-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. Wu, 2011: Contribution of the autumn Tibetan Plateau snow cover to seasonal prediction of North American winter temperature. J. Climate, 24, 28012813, https://doi.org/10.1175/2010JCLI3889.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., and Z. Wu, 2012: Contribution of Tibetan Plateau snow cover to the extreme winter conditions of 2009/10. Atmos.–Ocean, 50, 8694, https://doi.org/10.1080/07055900.2011.649036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., R.-G. Wu, and Y.-Z. Zhang, 2014a: Persistence of snow cover anomalies over the Tibetan Plateau and the implications for forecasting summer precipitation over the meiyu-baiu region. Atmos. Ocean. Sci. Lett., 7, 115119, https://doi.org/10.3878/j.issn.1674-2834.13.0074.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, G., R.-G. Wu, Y.-Z. Zhang, and S. Nan, 2014b: The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the mei-yu-baiu region. Adv. Atmos. Sci., 31, 755764, https://doi.org/10.1007/s00376-013-3183-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., J. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 88258839, https://doi.org/10.1175/JCLI-D-14-00704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T., J. Li, J. Feng, X. Wang, and Y. Li, 2016: Cross-seasonal relationship between the boreal autumn SAM and winter precipitation in the Northern Hemisphere in CMIP5. J. Climate, 29, 66176636, https://doi.org/10.1175/JCLI-D-15-0708.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luo, H., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966989, https://doi.org/10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., 2003: Trends in the southern annular mode from observations and reanalyses. J. Climate, 16, 41344143, https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, G. J., A. Orr, N. P. M. Van Lipzig, and J. C. King, 2006: The impact of a changing Southern Hemisphere annular mode on Antarctic peninsula summer temperatures. J. Climate, 19, 53885404, https://doi.org/10.1175/JCLI3844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Namias, J., 1985: Some empirical evidence for the influence of snow cover on temperature and precipitation. Mon. Wea. Rev., 113, 15421553, https://doi.org/10.1175/1520-0493(1985)113<1542:SEEFTI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, S., and J. Li, 2003: The relationship between summer precipitation in the Yangtze River valley and boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266, https://doi.org/10.1029/2003GL018381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nan, S., J. Li, X. Yuan, and P. Zhao, 2009: Boreal spring Southern Hemisphere annular mode, Indian Ocean sea surface temperature, and East Asian summer monsoon. J. Geophys. Res., 114, D02103, 356360, https://doi.org/10.1029/2008JD010045.

    • Search Google Scholar
    • Export Citation
  • Pu, Z., L. Xu, and V. V. Salomonson, 2007: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau. Geophys. Res. Lett., 34, L06706, 137161, https://doi.org/10.1029/2007GL029262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, Y. F., Y. Q. Zheng, Y. Zhang, and M. Q. Miao, 2003: Responses of China’s summer monsoon climate to snow anomaly over the Tibetan Plateau. Int. J. Climatol., 23, 593613, https://doi.org/10.1002/joc.901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reason, C. J. C., and M. Rouault, 2005: Links between the Antarctic Oscillation and winter rainfall over western South Africa. Geophys. Res. Lett., 32, L07705, https://doi.org/10.1029/2005GL022419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., and A. Frei, 2000: Seasonal variability of Northern Hemisphere snow extent using visible satellite data. Prof. Geogr., 52, 307315, https://doi.org/10.1111/0033-0124.00226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., K. F. Dewey, and R. R. Heim Jr., 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc., 74, 16891696, https://doi.org/10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM5: Part I. Max Planck Institute for Meteorology Rep. 349, 127 pp.

  • Rogers, J. C., and H. van Loon, 1982: Spatial variability of sea level pressure and 500 mb height anomalies over the Southern Hemisphere. Mon. Wea. Rev., 110, 13751392, https://doi.org/10.1175/1520-0493(1982)110<1375:SVOSLP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sallée, J. B., K. G. Speer, and S. R. Rintoul, 2010: Zonally asymmetric response of the Southern Ocean mixed-layer depth to the southern annular mode. Nat. Geosci., 3, 273279, https://doi.org/10.1038/ngeo812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the southern annular mode. J. Climate, 19, 44574486, https://doi.org/10.1175/JCLI3843.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., and M. H. England, 2007: Coupled ocean–atmosphere feedback in the southern annular mode. J. Climate, 20, 36773692, https://doi.org/10.1175/JCLI4200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaman, J., and E. Tziperman, 2005: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons. J. Climate, 18, 20672079, https://doi.org/10.1175/JCLI3391.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silvestri, G. E., and C. S. Vera, 2003: Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett., 30, 2115, https://doi.org/10.1029/2003GL018277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J.-Q., 2010: Possible impact of the boreal spring Antarctic Oscillation on the North American summer monsoon. Atmos. Ocean. Sci. Lett., 3, 232236, https://doi.org/10.1080/16742834.2010.11446870.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J.-Q., H. Wang, and W. Yuan, 2010: Linkage of the boreal spring Antarctic Oscillation to the West African summer monsoon. J. Meteor. Soc. Japan, 88, 1528, https://doi.org/10.2151/jmsj.2010-102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and S. Solomon, 2002: Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899, https://doi.org/10.1126/science.1069270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036, https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., M. P. Baldwin, and S. Solomon, 2005: Stratosphere–troposphere coupling in the Southern Hemisphere. J. Atmos. Sci., 62, 708715, https://doi.org/10.1175/JAS-3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1979: Interannual variability of the 500 mb zonal mean flow in the Southern Hemisphere. Mon. Wea. Rev., 107, 15151524, https://doi.org/10.1175/1520-0493(1979)107<1515:IVOTMZ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdy, A., J. Marshall, and A. Czaja, 2006: Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J. Phys. Oceanogr., 36, 13171331, https://doi.org/10.1175/JPO2913.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., K. Yang, Y. Li, D. Wu, and Y. Bo, 2017: Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in East China. J. Climate, 30, 885903, https://doi.org/10.1175/JCLI-D-16-0041.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G., Y. Liu, B. He, Q. Bao, A. Duan, and F.-F. Jin, 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009a: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, https://doi.org/10.1029/2009JD011733.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, B. Wang, and X. Liu, 2009b: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, https://doi.org/10.1029/2008JD011501.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Li, Z. Jiang, and T. Ma, 2012a: Modulation of the Tibetan Plateau snow cover on the ENSO teleconnections: From the East Asian summer monsoon perspective. J. Climate, 25, 24812489, https://doi.org/10.1175/JCLI-D-11-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., Z. Jiang, J. Li, S. Zhong, and L. Wang, 2012b: Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Climate Dyn., 39, 23932402, https://doi.org/10.1007/s00382-012-1439-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., J. Dou, and H. Lin, 2015: Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: A new mechanism. Climate Dyn., 44, 12151226, https://doi.org/10.1007/s00382-014-2241-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., P. Zhang, H. Chen, and Y. Li, 2016a: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Climate Dyn., 46, 34053417, https://doi.org/10.1007/s00382-015-2775-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, Z., X. Li, Y. Li, and Y. Li, 2016b: Potential influence of Arctic sea ice to the interannual variations of East Asian spring precipitation. J. Climate, 29, 27972813, https://doi.org/10.1175/JCLI-D-15-0128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xiao, Z., and A. Duan, 2016: Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon. J. Climate, 29, 84958514, https://doi.org/10.1175/JCLI-D-16-0029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, L., and P. Dirmeyer, 2013: Snow–atmosphere coupling strength. Part II: Albedo effect versus hydrological effect. J. Hydrometeor., 14, 404418, https://doi.org/10.1175/JHM-D-11-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yasunari, T., A. Kitoh, and T. Tokioka, 1991: Local and remote responses to excessive snow mass over Eurasia appearing in the northern spring and summer climate. J. Meteor. Soc. Japan, 69, 473487, https://doi.org/10.2151/jmsj1965.69.4_473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D.-Z., and G.-X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, https://doi.org/10.1007/BF01277509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeh, T. C., S. W. Luo, and P. C. Chu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor. Sin., 28, 108121.

    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, T. Miyasaka, and T. Yamagata, 2009: Respective influences of IOD and ENSO on the Tibetan snow cover in early winter. Climate Dyn., 33, 509520, https://doi.org/10.1007/s00382-008-0495-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, C., T. Tozuka, and T. Yamagata, 2012: IOD influence on the early winter Tibetan Plateau snow cover: Diagnostic analyses and an AGCM simulation. Climate Dyn., 39, 16431660, https://doi.org/10.1007/s00382-011-1204-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, X., and E. Yonekura, 2011: Decadal variability in the Southern Hemisphere. J. Geophys. Res., 116, D19115, https://doi.org/10.1029/2011JD015673.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, H., and G. W. K. Moore, 2004: On the relationship between Tibetan snow cover, the Tibetan Plateau monsoon and the Indian summer monsoon. Geophys. Res. Lett., 31, L14204, https://doi.org/10.1029/2004GL020040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., and L. Chen, 2001: Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci. China, 44D, 858864, https://doi.org/10.1007/BF02907098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, P., Z. Zhou, and J. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 39423955, https://doi.org/10.1175/JCLI4205.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, S., J. Li, and Y. Li, 2015: Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J. Climate, 28, 74377456, https://doi.org/10.1175/JCLI-D-14-00425.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, F., and J. Li, 2012: Impact of preceding boreal winter Southern Hemisphere annular mode on spring precipitation over south China and related mechanism (in Chinese). Chin. J. Geophys., 55, 35423557.

    • Search Google Scholar
    • Export Citation
  • Zheng, F., J. Li, L. Wang, F. Xie, and X. Li, 2015: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 68596881, https://doi.org/10.1175/JCLI-D-14-00515.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, X., J. Li, F. Xie, R. Ding, Y. Li, S. Zhao, J. Zhang, and Y. Li, 2018: The effects of the Indo-Pacific warm pool on the stratosphere. Climate Dyn., https://doi.org/10.1007/s00382-017-3584-2, in press.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., H. Liu, Y. Ding, F. Zhang, and W. Li, 2015: Interdecadal variation of spring snow depth over the Tibetan Plateau and its influence on summer rainfall over East China in the recent 30 years. Int. J. Climatol., 35, 36543660, https://doi.org/10.1002/joc.4239.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 524 223 14
PDF Downloads 410 127 11