Attribution of Arctic Sea Ice Decline from 1953 to 2012 to Influences from Natural, Greenhouse Gas, and Anthropogenic Aerosol Forcing

B. L. Mueller School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by B. L. Mueller in
Current site
Google Scholar
PubMed
Close
,
N. P. Gillett Canadian Centre for Climate Modelling and Analysis, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by N. P. Gillett in
Current site
Google Scholar
PubMed
Close
,
A. H. Monahan School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by A. H. Monahan in
Current site
Google Scholar
PubMed
Close
, and
F. W. Zwiers Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia, Canada

Search for other papers by F. W. Zwiers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The paper presents results from a climate change detection and attribution study on the decline of Arctic sea ice extent in September for the 1953–2012 period. For this period three independently derived observational datasets and simulations from multiple climate models are available to attribute observed changes in the sea ice extent to known climate forcings. Here we direct our attention to the combined cooling effect from other anthropogenic forcing agents (mainly aerosols), which has potentially masked a fraction of greenhouse gas–induced Arctic sea ice decline. The presented detection and attribution framework consists of a regression model, namely, regularized optimal fingerprinting, where observations are regressed onto model-simulated climate response patterns (i.e., fingerprints). We show that fingerprints from greenhouse gas, natural, and other anthropogenic forcings are detected in the three observed records of Arctic sea ice extent. Beyond that, our findings indicate that for the 1953–2012 period roughly 23% of the greenhouse gas–induced negative sea ice trend has been offset by a weak positive sea ice trend attributable to other anthropogenic forcing. We show that our detection and attribution results remain robust in the presence of emerging nonstationary internal climate variability acting upon sea ice using a perfect model experiment and data from two large ensembles of climate simulations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: B. L. Mueller, bennitm@uvic.ca

Abstract

The paper presents results from a climate change detection and attribution study on the decline of Arctic sea ice extent in September for the 1953–2012 period. For this period three independently derived observational datasets and simulations from multiple climate models are available to attribute observed changes in the sea ice extent to known climate forcings. Here we direct our attention to the combined cooling effect from other anthropogenic forcing agents (mainly aerosols), which has potentially masked a fraction of greenhouse gas–induced Arctic sea ice decline. The presented detection and attribution framework consists of a regression model, namely, regularized optimal fingerprinting, where observations are regressed onto model-simulated climate response patterns (i.e., fingerprints). We show that fingerprints from greenhouse gas, natural, and other anthropogenic forcings are detected in the three observed records of Arctic sea ice extent. Beyond that, our findings indicate that for the 1953–2012 period roughly 23% of the greenhouse gas–induced negative sea ice trend has been offset by a weak positive sea ice trend attributable to other anthropogenic forcing. We show that our detection and attribution results remain robust in the presence of emerging nonstationary internal climate variability acting upon sea ice using a perfect model experiment and data from two large ensembles of climate simulations.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: B. L. Mueller, bennitm@uvic.ca
Save
  • Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dyn., 21, 477491, https://doi.org/10.1007/s00382-003-0313-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, M. R., P. A. Stott, J. F. Mitchell, R. Schnur, and T. L. Delworth, 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617620, https://doi.org/10.1038/35036559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bajish, C. C., C. Haas, and M. Pittana, 2015: Evaluation of Arctic sea ice variability in CanSISE large ensemble of CanESM-2. Proc. 2015 CanSISE Workshop, Toronto, Canada, Canadian Sea Ice and Snow Evolution Network, 29 pp.

  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6, 687720, https://doi.org/10.5194/gmd-6-687-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bindoff, N. L., and Coauthors, 2013: Detection and attribution of climate change: From global to regional. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 867–952.

  • Chapman, W. L., and J. E. Walsh, 2001: 20th-century sea-ice variations from observational data. Ann. Glaciol., 33, 444448, https://doi.org/10.3189/172756401781818671.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V., and Coauthors, 2013: Long-term ozone changes and associated climate impacts in CMIP5 simulations. J. Geophys. Res. Atmos., 118, 50295060, https://doi.org/10.1002/jgrd.50316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fetterer, F., K. Knowles, W. Meier, and M. Savoie, 2002: Sea ice index, version 1. National Snow and Ice Data Center, accessed 3 June 2016, https://doi.org/10.7265/N5K072F8.

    • Crossref
    • Export Citation
  • Fetterer, F., J. Walsh, W. Chapman, and J. S. Stewart, 2016: Sea ice back to 1850: A longer observational record for assimilation by models and use in reanalyses. Geophysical Research Abstracts, Vol. 18, Abstract EGU2016-5157-1, https://meetingorganizer.copernicus.org/EGU2016/EGU2016-5157-1.pdf.

  • Fyfe, J., K. von Salzen, J. Cole, N. Gillett, and J.-P. Vernier, 2013: Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model. Geophys. Res. Lett., 40, 584588, https://doi.org/10.1002/grl.50156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagné, M.-È., N. Gillett, and J. Fyfe, 2015: Impact of aerosol emission controls on future Arctic sea ice cover. Geophys. Res. Lett., 42, 84818488, https://doi.org/10.1002/2015GL065504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagné, M.-È., J. C. Fyfe, N. P. Gillett, I. V. Polyakov, and G. M. Flato, 2017a: Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century. Geophys. Res. Lett., 44, 73387346, https://doi.org/10.1002/2016GL071941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gagné, M.-È., M. Kirchmeier-Young, N. Gillett, and J. Fyfe, 2017b: Arctic sea ice response to the eruptions of Agung, El Chichón, and Pinatubo. J. Geophys. Res. Atmos., 122, 80718078, https://doi.org/10.1002/2017JD027038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., G. C. Hegerl, M. R. Allen, and P. A. Stott, 2000: Implications of changes in the Northern Hemisphere circulation for the detection of anthropogenic climate change. Geophys. Res. Lett., 27, 993996, https://doi.org/10.1029/1999GL010981.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., F. W. Zwiers, A. J. Weaver, and P. A. Stott, 2003: Detection of human influence on sea-level pressure. Nature, 422, 292294, https://doi.org/10.1038/nature01487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., V. K. Arora, D. Matthews, and M. R. Allen, 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 68446858, https://doi.org/10.1175/JCLI-D-12-00476.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillett, N. P., and Coauthors, 2016: Detection and Attribution Model Intercomparison Project (DAMIP). Geosci. Model Dev., 9, 36853697, https://doi.org/10.5194/gmd-9-3685-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, H. B., S. O’Farrell, M. Collier, M. Dix, L. Rotstayn, E. Kowalczyk, T. Hirst, and I. Watterson, 2010: The CSIRO Mk3.5 climate model. CSIRO and Bureau of Meteorology Tech. Rep. 21, 62 pp.

  • Gregory, J., P. Stott, D. Cresswell, N. Rayner, C. Gordon, and D. Sexton, 2002: Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett., 29, 2175, https://doi.org/10.1029/2001GL014575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hegerl, G. C., O. Hoegh-Guldberg, G. Casassa, M. P. Hoerling, R. Kovats, C. Parmesan, D. W. Pierce, and P. A. Stott, 2010: Good practice guidance paper on detection and attribution related to anthropogenic climate change. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Detection and Attribution of Anthropogenic Climate Change, T. F. Stocker et al., Eds., IPCC, 8 pp., www.ipcc-wg2.awi.de/guidancepaper/IPCC_D&A_GoodPracticeGuidancePaper.pdf.

  • Heo, J., and S.-K. Min, 2014: Attribution of recent arctic sea ice melting to human influence. Geophysical Research Abstracts, Vol. 16, EGU2014-4647-3, https://meetingorganizer.copernicus.org/EGU2014/EGU2014-4647-3.pdf.

  • Jones, G. S., P. A. Stott, and N. Christidis, 2013: Attribution of observed historical near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res., 118, 40014024, https://doi.org/10.1002/jgrd.50239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., F. W. Zwiers, and N. P. Gillett, 2017: Attribution of extreme events in Arctic sea ice extent. J. Climate, 30, 553571, https://doi.org/10.1175/JCLI-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kloster, S., F. Dentener, J. Feichter, F. Raes, U. Lohmann, E. Roeckner, and I. Fischer-Bruns, 2010: A GCM study of future climate response to aerosol pollution reductions. Climate Dyn., 34, 11771194, https://doi.org/10.1007/s00382-009-0573-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, https://doi.org/10.1175/JCLI-D-12-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., J. Sedláček, B. M. Sanderson, R. Lorenz, E. M. Fischer, and V. Eyring, 2017: A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett., 44, 19091918, https://doi.org/10.1002/2016GL072012.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESAT records: 1958–2008. Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. Spreen, and S. Pang, 2013: Arctic sea ice circulation and drift speed: Decadal trends and ocean currents. J. Geophys. Res. Oceans, 118, 24082425, https://doi.org/10.1002/jgrc.20191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laxon, S. W., and Coauthors, 2013: CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732737, https://doi.org/10.1002/grl.50193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levy, H., L. W. Horowitz, M. D. Schwarzkopf, Y. Ming, J.-C. Golaz, V. Naik, and V. Ramaswamy, 2013: The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos., 118, 45214532, https://doi.org/10.1002/jgrd.50192.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., J. Zhang, A. Schweiger, M. Steele, and H. Stern, 2009: Arctic sea ice retreat in 2007 follows thinning trend. J. Climate, 22, 165176, https://doi.org/10.1175/2008JCLI2521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahoney, A. R., R. G. Barry, V. Smolyanitsky, and F. Fetterer, 2008: Observed sea ice extent in the Russian Arctic, 1933–2006. J. Geophys. Res., 113,C11005, https://doi.org/10.1029/2008JC004830.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, https://doi.org/10.5194/tc-6-1383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meier, W. N., J. Stroeve, A. Barrett, and F. Fetterer, 2012: A simple approach to providing a more consistent Arctic sea ice extent time series from the 1950s to present. Cryosphere, 6, 13591368, https://doi.org/10.5194/tc-6-1359-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merryfield, W. J., and Coauthors, 2013: The Canadian Seasonal to Interannual Prediction System. Part I: Models and initialization. Mon. Wea. Rev., 141, 29102945, https://doi.org/10.1175/MWR-D-12-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and Coauthors, 2014: CMIP5 historical simulations (1850–2012) with GISS ModelE2. J. Adv. Model. Earth Syst., 6, 441478, https://doi.org/10.1002/2013MS000266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and T. Agnew, 2008: Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett., 35, L21701, https://doi.org/10.1029/2008GL035725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, J., D. Karoly, G. Hegrel, F. Zwiers, M. Allen, and J. Marengo, 2001: Detection of climate change and attribution of causes. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 695–738.

  • Najafi, M. R., F. W. Zwiers, and N. P. Gillett, 2015: Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Climate Change, 5, 246249, https://doi.org/10.1038/nclimate2524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Najafi, M. R., F. W. Zwiers, and N. P. Gillett, 2016: Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence. Climatic Change, 136, 571586, https://doi.org/10.1007/s10584-016-1632-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pirón, M. Á. C., and J. A. C. Pasalodos, 2016: Nueva serie de extensión del hielo marino ártico en septiembre entre 1935 y 2014 [A new time series of September Arctic sea ice extent: 1935–2014]. Rev. Climatol., 16, 119.

    • Search Google Scholar
    • Export Citation
  • Planton, S., A. Barkhordarian, A. Ribes, and H. Von Storch, 2013: Detection and attribution. Regional Assessment of Climate Change in the Mediterranean, A. Navarra and L. Tubiana, Eds., Springer, 157–186.

    • Crossref
    • Export Citation
  • Polyakov, I. V., and Coauthors, 2003: Long-term ice variability in Arctic marginal seas. J. Climate, 16, 20782085, https://doi.org/10.1175/1520-0442(2003)016<2078:LIVIAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part II: Application to global near-surface temperature. Climate Dyn., 41, 28372853, https://doi.org/10.1007/s00382-013-1736-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 28172836, https://doi.org/10.1007/s00382-013-1735-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ribes, A., F. W. Zwiers, J.-M. Azaïs, and P. Naveau, 2017: A new statistical approach to climate change detection and attribution. Climate Dyn., 48, 367386, https://doi.org/10.1007/s00382-016-3079-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191219, https://doi.org/10.1029/1998RG000054.

  • Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999: Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 34693472, https://doi.org/10.1029/1999GL010863.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., P. W. Mote, N. L. Bindoff, P. A. Stott, and D. A. Robinson, 2013: Detection and attribution of observed changes in Northern Hemisphere spring snow cover. J. Climate, 26, 69046914, https://doi.org/10.1175/JCLI-D-12-00563.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sanderson, B. M., R. Knutti, and P. Caldwell, 2015: A representative democracy to reduce interdependency in a multimodel ensemble. J. Climate, 28, 51715194, https://doi.org/10.1175/JCLI-D-14-00362.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, M., J. E. Hansen, M. P. McCormick, and J. B. Pollack, 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22 98722 994, https://doi.org/10.1029/93JD02553.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Selyuzhenok, V., T. Krumpen, A. Mahoney, M. Janout, and R. Gerdes, 2015: Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013. J. Geophys. Res. Oceans, 120, 77917806, https://doi.org/10.1002/2015JC011135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sen Gupta, A., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 85978615, https://doi.org/10.1175/JCLI-D-12-00521.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, https://doi.org/10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shu, Q., Z. Song, and F. Qiao, 2015: Assessment of sea ice simulations in the CMIP5 models. Cryosphere, 9, 399409, https://doi.org/10.5194/tc-9-399-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., J. S. Daniel, R. R. Neely, J.-P. Vernier, E. G. Dutton, and L. W. Thomason, 2011: The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866870, https://doi.org/10.1126/science.1206027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., and J. Kettleborough, 2002: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature, 416, 723726, https://doi.org/10.1038/416723a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012a: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J. C., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012b: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren, 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 10821085, https://doi.org/10.1038/nclimate2410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., V. Balaji, S. Hankin, M. Juckes, B. Lawrence, and S. Pascoe, 2011: CMIP5 Data Reference Syntax (DRS) and controlled vocabularies. PCMDI, 14 pp., https://cmip.llnl.gov/cmip5/docs/cmip5_data_reference_syntax_v1-02_clean.pdf.

  • Titchner, H. A., and N. A. Rayner, 2014: The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos., 119, 28642889, https://doi.org/10.1002/2013JD020316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uotila, P., S. O’Farrell, S. Marsland, and D. Bi, 2013: The sea-ice performance of the Australian climate models participating in the CMIP5. Aust. Meteor. Oceanogr. J., 63, 121143, https://doi.org/10.22499/2.6301.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vaughan, D. G., and Coauthors, 2013: Observations: Cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 317–382.

  • Vinnikov, K. Y., and Coauthors, 1999: Global warming and Northern Hemisphere sea ice extent. Science, 286, 19341937, https://doi.org/10.1126/science.286.5446.1934.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and C. M. Johnson, 1979: An analysis of Arctic sea ice fluctuations, 1953–77. J. Phys. Oceanogr., 9, 580591, https://doi.org/10.1175/1520-0485(1979)009<0580:AAOASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., W. L. Chapman, and F. Fetterer, 2015: Gridded monthly sea ice extent and concentration, 1850 onward, version 1. National Snow and Ice Data Center, accessed 15 June 2016, https://doi.org/10.7265/N5833PZ5.

    • Crossref
    • Export Citation
  • Wan, H., X. Zhang, F. Zwiers, and S.-K. Min, 2015: Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Climate Dyn., 45, 17131726, https://doi.org/10.1007/s00382-014-2423-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwiers, F. W., G. C. Hegerl, X. Zhang, and Q. Wen, 2014: Quantifying the human and natural contributions to observed climate change. Statistics in Action: A Canadian Outlook, J. F. Lawless, Ed., Chapman & Hall/CRC, 321–340.

    • Crossref
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1294 365 45
PDF Downloads 935 248 24