Role of the Tian Shan Mountains and Pamir Plateau in Increasing Spatiotemporal Differentiation of Precipitation over Interior Asia

Yingying Sha State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China

Search for other papers by Yingying Sha in
Current site
Google Scholar
PubMed
Close
,
Zhengguo Shi State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China

Search for other papers by Zhengguo Shi in
Current site
Google Scholar
PubMed
Close
,
Xiaodong Liu State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China

Search for other papers by Xiaodong Liu in
Current site
Google Scholar
PubMed
Close
,
Zhisheng An State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China

Search for other papers by Zhisheng An in
Current site
Google Scholar
PubMed
Close
,
Xinzhou Li State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China

Search for other papers by Xinzhou Li in
Current site
Google Scholar
PubMed
Close
, and
Hong Chang State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China

Search for other papers by Hong Chang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Numerical simulations were conducted to determine the impact of the Tian Shan Mountains and Pamir Plateau on arid conditions over interior Asia. These topographies are crucial for the differentiation of the precipitation seasonality among the subregions in the west, east, and north of the Tian Shan Mountains and Pamir Plateau, namely, arid central Asia, the Tarim basin, and the northern plains. Before the uplift of the Tian Shan Mountains and Pamir Plateau, the precipitation seasonality over the east arid subregion was consistent with that over the west arid subregion, with maximum rainfall in spring and winter and minimum rainfall in summer. After the uplift of the Tian Shan Mountains and Pamir Plateau, the original precipitation seasonality in the west was strengthened. As the precipitation in the east arid subregion increased in summer but decreased in winter and spring, the precipitation seasonality in the east changed to peak in summer, while the precipitation in the north arid subregion showed the opposite change. The precipitation alteration corresponded well with the change of vertical motion. With the modulation of atmospheric stationary waves, the remote East Asian monsoon was also impacted. Though enhanced southerly wind blew over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean was significantly reduced as an anticyclonic circulation appeared. The Tian Shan Mountains and Pamir Plateau also contributed to the intensification of the East Asian winter monsoon.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingying Sha, shayingying@ieecas.cn

Abstract

Numerical simulations were conducted to determine the impact of the Tian Shan Mountains and Pamir Plateau on arid conditions over interior Asia. These topographies are crucial for the differentiation of the precipitation seasonality among the subregions in the west, east, and north of the Tian Shan Mountains and Pamir Plateau, namely, arid central Asia, the Tarim basin, and the northern plains. Before the uplift of the Tian Shan Mountains and Pamir Plateau, the precipitation seasonality over the east arid subregion was consistent with that over the west arid subregion, with maximum rainfall in spring and winter and minimum rainfall in summer. After the uplift of the Tian Shan Mountains and Pamir Plateau, the original precipitation seasonality in the west was strengthened. As the precipitation in the east arid subregion increased in summer but decreased in winter and spring, the precipitation seasonality in the east changed to peak in summer, while the precipitation in the north arid subregion showed the opposite change. The precipitation alteration corresponded well with the change of vertical motion. With the modulation of atmospheric stationary waves, the remote East Asian monsoon was also impacted. Though enhanced southerly wind blew over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean was significantly reduced as an anticyclonic circulation appeared. The Tian Shan Mountains and Pamir Plateau also contributed to the intensification of the East Asian winter monsoon.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yingying Sha, shayingying@ieecas.cn
Save
  • Aizen, E. M., V. B. Aizen, J. M. Melack, T. Nakamura, and T. Ohta, 2001: Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol., 21, 535556, https://doi.org/10.1002/joc.626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, Z. S., G. Kukla, S. C. Porter, and J. L. Xiao, 1991: Late Quaternary dust flow on the Chinese Loess Plateau. Catena, 18, 125132, https://doi.org/10.1016/0341-8162(91)90012-M.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, Z. S., J. E. Kutzbach, W. L. Prell, and S. C. Porter, 2001: Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411, 6266, https://doi.org/10.1038/35075035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • An, Z. S., and Coauthors, 2006: Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene (in Chinese). Quat. Sci., 26, 678693.

    • Search Google Scholar
    • Export Citation
  • Bacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Turesdale, 2014: Exploratory high-resolution climate simulations using the Community Atmosphere Model (CAM). J. Climate, 27, 30733099, https://doi.org/10.1175/JCLI-D-13-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, J., and G. Vecchi, 2016: Influence of the Tian Shan on arid extratropical Asia. J. Climate, 29, 57415762, https://doi.org/10.1175/JCLI-D-15-0490.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothe, O., K. Fraedrich, and X. Zhu, 2012: Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol., 108, 345354, https://doi.org/10.1007/s00704-011-0537-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brayshaw, D. J., B. Hoskins, and M. Blackburn, 2009: The basic ingredients of the North Atlantic storm track. Part I: Land–sea contrast and orography. J. Atmos. Sci., 66, 25392558, https://doi.org/10.1175/2009JAS3078.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broccoli, A. J., and S. Manabe, 1992: The effects of orography on midlatitude Northern Hemisphere dry climates. J. Climate, 5, 11811201, https://doi.org/10.1175/1520-0442(1992)005<1181:TEOOOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caves, J. K., M. J. Winnick, S. A. Graham, D. J. Sjostrom, A. Mulch, and C. P. Chamberlain, 2015: Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett., 428, 3343, https://doi.org/10.1016/j.epsl.2015.07.023.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Caves, J. K., and Coauthors, 2017: Late Miocene uplift of the Tian Shan and Altai and reorganization of Central Asia climate. GSA Today, 27, 1926, https://doi.org/10.1130/GSATG305A.1.

    • Search Google Scholar
    • Export Citation
  • Chang, H., Z. S. An, W. G. Liu, X. K. Qiang, Y. G. Song, and H. Ao, 2012: Magnetostratigraphic and paleoenvironmental records for a late Cenozoic sedimentary sequence drilled from Lop Nor in the eastern Tarim basin. Global Planet. Change, 80–81, 113122, https://doi.org/10.1016/j.gloplacha.2011.09.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charreau, J., and Coauthors, 2009: Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics, 28, TC2008, https://doi.org/10.1029/2007TC002137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F. H., and Coauthors, 2010: Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev., 29, 10551068, https://doi.org/10.1016/j.quascirev.2010.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Grave, J., M. M. Buslov, and P. Van den haute, 2007: Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J. Asian Earth Sci., 29, 188204, https://doi.org/10.1016/j.jseaes.2006.03.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Z. L., S. F. Xiong, J. M. Sun, S. L. Yang, Z. Y. Gu, and T. S. Liu, 1999: Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess–red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 4966, https://doi.org/10.1016/S0031-0182(99)00034-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and K. L. Brubaker, 2007: Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor. J. Hydrometeor., 8, 2037, https://doi.org/10.1175/JHM557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z. T., and Coauthors, 2002: Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159163, https://doi.org/10.1038/416159a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guo, Z. T., and Coauthors, 2008: A major reorganization of Asian climate by the early Miocene. Climate Past, 4, 153174, https://doi.org/10.5194/cp-4-153-2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, R. H., and J. L. Chen, 2010: Characteristics of the summertime water vapor transports over the eastern part of China and those over the western part of China and their difference (in Chinese). Chin. J. Atmos. Sci., 34, 10351045.

    • Search Google Scholar
    • Export Citation
  • Huang, W., F. H. Chen, S. Feng, J. H. Chen, and X. J. Zhang, 2013: Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin. Sci. Bull., 58, 39623968, https://doi.org/10.1007/s11434-013-5970-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., P. J. Guetter, W. F. Ruddiman, and W. L. Prell, 1989: Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West: Numerical experiments. J. Geophys. Res., 94, 18 39318 407, https://doi.org/10.1029/JD094iD15p18393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., W. L. Prell, and W. F. Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol., 101, 177190, https://doi.org/10.1086/648215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lioubimtseva, E., R. Cole, J. M. Adams, and G. Kapustin, 2005: Impacts of climate and land-cover changes in arid lands of Central Asia. J. Arid Environ., 62, 285308, https://doi.org/10.1016/j.jaridenv.2004.11.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, T. S., 1985: Loess and the Environment. China Ocean Press, 251 pp.

  • Liu, W. G., Z. H. Liu, Z. S. An, J. M. Sun, H. Chang, N. Wang, J. B. Dong, and H. Y. Wang, 2014: Late Miocene episodic lakes in the arid Tarim basin, western China. Proc. Natl. Acad. Sci. USA, 111, 16 29216 296, https://doi.org/10.1073/pnas.1410890111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., and Z.-Y. Yin, 2002: Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 223245, https://doi.org/10.1016/S0031-0182(01)00488-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., and B. W. Dong, 2013: Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution. Chin. Sci. Bull., 58, 42774291, https://doi.org/10.1007/s11434-013-5987-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. D., H. Sun, Y. F. Miao, B. W. Dong, and Z.-Y. Yin, 2015: Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment. Quat. Sci. Rev., 116, 114, https://doi.org/10.1016/j.quascirev.2015.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martyn, D., 1992: Climates of the World. Elsevier, 435 pp.

  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77102, https://doi.org/10.1146/annurev-earth-040809-152456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-485+ STR, 212 pp., www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf.

  • Qiang, X. K., and Coauthors, 2011: New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Earth Sci., 54, 136144, https://doi.org/10.1007/s11430-010-4126-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rea, D. K., H. Snoeckx, and L. H. Joseph, 1998: Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography, 13, 215224, https://doi.org/10.1029/98PA00123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowley, D. B., and B. S. Currie, 2006: Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677681, https://doi.org/10.1038/nature04506.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., 2005: The TianShan rain-shadow influence on the arid climate formation in northwestern China. SOLA, 1, 1316, https://doi.org/10.2151/sola.2005-004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., 2009: Influences of subtropical jet and Tibetan Plateau on precipitation pattern in Asia: Insights from regional climate modeling. Quat. Int., 194, 148158, https://doi.org/10.1016/j.quaint.2008.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sato, T., and Coauthors, 2007: Water sources in semiarid northeast Asia as revealed by field observations and isotope transport model. J. Geophys. Res., 112, D17112, https://doi.org/10.1029/2006JD008321.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiemann, R., D. Lüthi, P. L. Vidale, and C. Schär, 2008: The precipitation climate of Central Asia—Intercomparison of observational and numerical data sources in a remote semiarid region. Int. J. Climatol., 28, 295314, https://doi.org/10.1002/joc.1532.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sha, Y. Y., Z. G. Shi, X. D. Liu, and Z. S. An, 2015: Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon. J. Geophys. Res. Atmos., 120, 47644782, https://doi.org/10.1002/2014JD022880.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z. G., X. D. Liu, Z. S. An, B. Q. Yi, P. Yang, and N. Mahowald, 2011: Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, Last Glacial Maximum, and present day: Contributions from the regional tectonic uplift and global climate change. Climate Dyn., 37, 22892301, https://doi.org/10.1007/s00382-011-1078-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z. G., X. D. Liu, Y. M. Liu, Y. Y. Sha, and T. T. Xu, 2015: Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean. Climate Dyn., 44, 30673076, https://doi.org/10.1007/s00382-014-2217-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Z. G., Y. Y. Sha, and X. D. Liu, 2017: Effect of Yunnan–Guizhou topography at the southeastern Tibetan Plateau on the Indian monsoon. J. Climate, 30, 12591272, https://doi.org/10.1175/JCLI-D-16-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, E. R., L. M. Schoenbohm, J. Chen, R. Thiede, D. F. Stockli, M. Sudo, and M. R. Strecker, 2011: Late Miocene–Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis. Earth Planet. Sci. Lett., 304, 369378, https://doi.org/10.1016/j.epsl.2011.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. M., R. X. Zhu, and J. Bowler, 2004: Timing of the Tianshan Mountains uplift constrained by magnetostratigraphic analysis of molasse deposits. Earth Planet. Sci. Lett., 219, 239253, https://doi.org/10.1016/S0012-821X(04)00008-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. M., J. Ye, W. Y. Wu, X. J. Ni, S. D. Bi, Z. Q. Zhang, W. M. Liu, and J. Meng, 2010: Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology, 38, 515518, https://doi.org/10.1130/G30776.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J. M., Z. J. Gong, Z. H. Tian, Y. Y. Jia, and B. Windley, 2015: Late Miocene stepwise aridification in the Asian interior and the interplay between tectonics and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 421, 4859, https://doi.org/10.1016/j.palaeo.2015.01.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Syed, F. S., F. Giorgi, J. S. Pal, and M. P. King, 2006: Effect of remote forcings on the winter precipitation of central southwest Asia. Part 1: Observations. Theor. Appl. Climatol., 86, 147160, https://doi.org/10.1007/s00704-005-0217-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tian, L., V. Masson-Delmotte, M. Stievenard, T. Yao, and J. Jouzel, 2001: Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res., 106, 28 08128 088, https://doi.org/10.1029/2001JD900186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valdes, P. J., and B. J. Hoskins, 1991: Nonlinear orographically forced planetary waves. J. Atmos. Sci., 48, 20892106, https://doi.org/10.1175/1520-0469(1991)048<2089:NOFPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • White, R. H., D. S. Battisti, and G. H. Roe, 2017: Mongolian mountains matter most: Impacts of the latitude and height of Asian orography on Pacific wintertime atmospheric circulation. J. Climate, 30, 40654082, https://doi.org/10.1175/JCLI-D-16-0401.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, https://doi.org/10.1175/JHM609.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and C. F. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305323, https://doi.org/10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., and T. Yasunari, 1998: Variation of summer water vapor transport related to precipitation over and around the arid region in the interior of the Eurasian continent. J. Meteor. Soc. Japan, 76, 799815, https://doi.org/10.2151/jmsj1965.76.5_799.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yatagai, A., T. N. Krishnamurti, V. Kumar, A. K. Mishra, and A. Simon, 2014: Use of APHRODITE rain gauge–based precipitation and TRMM 3B43 products for improving Asian monsoon seasonal precipitation forecasts by the superensemble method. J. Climate, 27, 10621069, https://doi.org/10.1175/JCLI-D-13-00332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ye, D. Z., and Y. X. Gao, 1979: Meteorology of the Qinghai-Xizang Plateau. Chinese Science Press, 278 pp.

  • Yin, Z.-Y., H. L. Wang, and X. D. Liu, 2014: A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and Central central Asia. J. Climate, 27, 78307848, https://doi.org/10.1175/JCLI-D-14-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, G., S. P. Harrison, and B. Xue, 2001: Lake status records from China: Data base documentation. Max-Planck-Institute fur Biogeochemie Tech. Rep. 4, 50 pp.

  • Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos.–Ocean, 33, 407446, https://doi.org/10.1080/07055900.1995.9649539.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, R., D. B. Jiang, Z. S. Zhang, and E. T. Yu, 2015: The impact of regional uplift of the Tibetan Plateau on the Asian monsoon climate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 417, 137150, https://doi.org/10.1016/j.palaeo.2014.10.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, H. B., C. M. Powell, Z. S. An, J. Zhou, and G. R. Dong, 2000: Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715718, https://doi.org/10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, X. F., M. J. Zhang, S. J. Wang, F. Qiang, T. Zeng, Z. G. Ren, and L. Dong, 2015: Comparison of monthly precipitation derived from high-resolution gridded datasets in arid Xinjiang, Central Asia. Quat. Int., 358, 160170, https://doi.org/10.1016/j.quaint.2014.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 924 202 8
PDF Downloads 710 170 5