Role of North Indian Ocean Air–Sea Interaction in Summer Monsoon Intraseasonal Oscillation

Lei Zhang Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Lei Zhang in
Current site
Google Scholar
PubMed
Close
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Yuanlong Li Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
, and
Eric D. Maloney Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Eric D. Maloney in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Air–sea coupling processes over the north Indian Ocean associated with the Indian summer monsoon intraseasonal oscillation (MISO) are investigated. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation and surface latent heat flux. In turn, SST anomalies may also affect the MISO precipitation tendency (dP/dt). In particular, warm (cold) SST anomalies can contribute to increasing (decreasing) precipitation rate through enhanced (suppressed) surface convergence associated with boundary layer pressure gradients. These air–sea interaction processes are manifest in a quadrature relation between MISO precipitation and SST anomalies. A local air–sea coupling model (LACM) is formulated based on these observed physical processes. The period of the LACM is proportional to the square root of seasonal mixed layer depth H, assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the north Indian Ocean during the May–June monsoon developing (July–August monsoon mature) phase when H is shallow (deep). This result is consistent with observed MISO characteristics. A 30-day-period oscillating external forcing is also added to the LACM, representing intraseasonal oscillations propagating from the equatorial Indian Ocean to the north Indian Ocean. It is found that resonance will occur when H is close to 25 m, which significantly enhances the MISO amplitude. This process may contribute to the higher MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with the seasonal cycle of H.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0691.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhang, lezh8230@colorado.edu

Abstract

Air–sea coupling processes over the north Indian Ocean associated with the Indian summer monsoon intraseasonal oscillation (MISO) are investigated. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation and surface latent heat flux. In turn, SST anomalies may also affect the MISO precipitation tendency (dP/dt). In particular, warm (cold) SST anomalies can contribute to increasing (decreasing) precipitation rate through enhanced (suppressed) surface convergence associated with boundary layer pressure gradients. These air–sea interaction processes are manifest in a quadrature relation between MISO precipitation and SST anomalies. A local air–sea coupling model (LACM) is formulated based on these observed physical processes. The period of the LACM is proportional to the square root of seasonal mixed layer depth H, assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the north Indian Ocean during the May–June monsoon developing (July–August monsoon mature) phase when H is shallow (deep). This result is consistent with observed MISO characteristics. A 30-day-period oscillating external forcing is also added to the LACM, representing intraseasonal oscillations propagating from the equatorial Indian Ocean to the north Indian Ocean. It is found that resonance will occur when H is close to 25 m, which significantly enhances the MISO amplitude. This process may contribute to the higher MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with the seasonal cycle of H.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0691.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lei Zhang, lezh8230@colorado.edu

Supplementary Materials

    • Supplemental Materials (PDF 8.82 MB)
Save
  • Abhik, S., M. Halder, P. Mukhopadhyay, X. Jiang, and B. N. Goswami, 2013: A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Climate Dyn., 40, 16111624, https://doi.org/10.1007/s00382-012-1425-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., J. M. Wallace, and J. M. Monteiro, 2016: Seasonality of the structure and propagation characteristics of the MJO. J. Atmos. Sci., 73, 35113526, https://doi.org/10.1175/JAS-D-15-0232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85102, https://doi.org/10.1007/s003820100161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Back, L. E., and C. S. Bretherton, 2009: On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans. J. Climate, 22, 41824196, https://doi.org/10.1175/2009JCLI2392.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, 2016: A long-term record of blended satellite and in situ sea surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data, 8, 165176, https://doi.org/10.5194/essd-8-165-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., E. S. Sarachik, and A. C. Hirst, 1999: A consistent model for the large-scale steady surface atmospheric circulation in the tropics. J. Climate, 12, 29562964, https://doi.org/10.1175/1520-0442(1999)012<2956:ACMFTL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and Coauthors, 2001: BOBMEX: The Bay of Bengal Monsoon Experiment. Bull. Amer. Meteor. Soc., 82, 22172243, https://doi.org/10.1175/1520-0477(2001)082<2217:BTBOBM>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., and Y. Ming, 2013: The role of land-surface processes in modulating the Indian monsoon annual cycle. Climate Dyn., 41, 24972509, https://doi.org/10.1007/s00382-012-1634-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597. https://doi.org/10.1002/qj.828

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMott, C. A., C. Stan, and D. A. Randall, 2013: Northward propagation mechanisms of the boreal summer intraseasonal oscillation in the ERA-Interim and SP-CCSM. J. Climate, 26, 19731992, https://doi.org/10.1175/JCLI-D-12-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fu, X., B. Wang, T. Li, and J. P. McCreary, 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 17331753, https://doi.org/10.1175/1520-0469(2003)060<1733:CBNIOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadgil, S., P. V. Joseph, and N. V. Joshi, 1984: Ocean–atmosphere coupling over monsoon regions. Nature, 312, 141143, https://doi.org/10.1038/312141a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238, 657659, https://doi.org/10.1126/science.238.4827.657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., and M. L. Michelsen, 1989: Intraseasonal periodicities in Indian rainfall. J. Atmos. Sci., 46, 28382862, https://doi.org/10.1175/1520-0469(1989)046<2838:IPIIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Ohira, and T. Nakamura, 2008: A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev., 8, 4759, https://doi.org/10.5918/jamstecr.8.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 10221039, https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joseph, P. V., and T. P. Sabin, 2008: An ocean–atmosphere interaction mechanism for the active break cycle of the Asian summer monsoon. Climate Dyn., 30, 553566, https://doi.org/10.1007/s00382-007-0305-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 29232942, https://doi.org/10.1175/1520-0442(2001)014<2923:EWAASI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klingaman, N. P., P. M. Inness, H. Weller, and J. M. Slingo, 2008: The importance of high-frequency sea surface temperature variability to the intraseasonal oscillation of Indian monsoon rainfall. J. Climate, 21, 61196140, https://doi.org/10.1175/2008JCLI2329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2007: Intraseasonal and seasonally persisting patterns of Indian monsoon rainfall. J. Climate, 20, 320, https://doi.org/10.1175/JCLI3981.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and J. Shukla, 2008: Seasonal persistence and propagation of intraseasonal patterns over the Indian monsoon region. Climate Dyn., 30, 353369, https://doi.org/10.1007/s00382-007-0300-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and D. Achuthavarier, 2012: Intraseasonal oscillations of the monsoon circulation over South Asia. Climate Dyn., 38, 23352353, https://doi.org/10.1007/s00382-011-1153-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta, 1988: Air–sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45, 13041322, https://doi.org/10.1175/1520-0469(1988)045<1304:AIOTTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere–Ocean Climate System. 2nd ed. Springer, 614 pp.

    • Crossref
    • Export Citation
  • Li, Y., and R. E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. J. Climate, 69, 29832994, https://doi.org/10.1175/JAS-D-11-0245.1.

    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, and M. Ravichandran, 2016: Intraseasonal variability of SST and precipitation in the Arabian Sea during the Indian summer monsoon: Impact of ocean mixed layer depth. J. Climate, 29, 78897910, https://doi.org/10.1175/JCLI-D-16-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, M. Ravichandran, W. Wang, T. Shinoda, and T. Lee, 2017a: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 1. Intraseasonal variability and causes. J. Geophys. Res. Oceans, 122, 42914311, https://doi.org/10.1002/2017JC012691.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, M. Ravichandran, T. Lee, and T. Shinoda, 2017b: Bay of Bengal salinity stratification and Indian summer monsoon intraseasonal oscillation: 2. Impact on SST and convection. J. Geophys. Res. Oceans, 122, 43124328, https://doi.org/10.1002/2017JC012692.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, W. Wang, L. Zhang, and M. Ravichandran, 2018: The Indian summer monsoon intraseasonal oscillations in CFSv2 forecasts: Biases and importance of improving air–sea interaction processes. J. Climate, 31, 53515370, https://doi.org/10.1175/JCLI-D-17-0623.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44, 24182436, https://doi.org/10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. A. Wielicki, P. O. Hinton, and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822835, https://doi.org/10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386, https://doi.org/10.1175/JCLI-3212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Narapusetty, B., R. Murtugudde, H. Wang, and A. Kumar, 2016: Ocean–atmosphere processes driving Indian summer monsoon biases in CFSv2 hindcasts. Climate Dyn., 47, 14171433, https://doi.org/10.1007/s00382-015-2910-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pookkandy, B., D. Dommenget, N. Klingaman, S. Wales, C. Chung, C. Frauen, and H. Wolff, 2016: The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model. Climate Dyn., 47, 29913010, https://doi.org/10.1007/s00382-016-3009-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. J. Earth Syst. Sci., 119, 229247, https://doi.org/10.1007/s12040-010-0019-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rajendran, K., R. S. Nanjundiah, and J. Srinivasan, 2002: The impact of surface hydrology on the simulation of tropical intraseasonal oscillation in NCAR (CCM2) atmospheric GCM. J. Meteor. Soc. Japan, 80, 13571381, https://doi.org/10.2151/jmsj.80.1357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richter, I., and S.-P. Xie, 2008: Muted precipitation increase in global warming simulations: A surface evaporation perspective. J. Geophys. Res., 113, D24118D24120, https://doi.org/10.1029/2008JD010561.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2007: Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon. J. Meteor. Soc. Japan, 85, 349358, https://doi.org/10.2151/jmsj.85.349.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., and Y. Tanimoto, 2012: Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Climate Dyn., 39, 12091218, https://doi.org/10.1007/s00382-011-1118-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M., Y. Tanimoto, B. Preethi, P. Terray, and R. Krishnan, 2013: Intraseasonal SST–precipitation relationship and its spatial variability over the tropical summer monsoon region. Climate Dyn., 41, 4561, https://doi.org/10.1007/s00382-012-1547-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiller, A., and J. S. Godfrey, 2003: Indian Ocean intraseasonal variability in an ocean general circulation model. J. Climate, 16, 2139, https://doi.org/10.1175/1520-0442(2003)016<0021:IOIVIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., and M. Ravichandran, 2001: Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophys. Res. Lett., 28, 20332036, https://doi.org/10.1029/2000GL012548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sengupta, D., B. N. Goswami, and R. Senan, 2001: Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 41274130, https://doi.org/10.1029/2001GL013587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., S. R. Shetye, and P. V. Joseph, 2007: Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal. J. Earth Syst. Sci., 116, 385406, https://doi.org/10.1007/s12040-007-0038-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sharmila, S., and Coauthors, 2013: Role of ocean–atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Climate Dyn., 41, 16511669, https://doi.org/10.1007/s00382-013-1854-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 18401853, https://doi.org/10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., 2007: Simple models of ensemble-averaged precipitation and surface wind, given the sea surface temperature. The Global Circulation of the Atmosphere, T. Schneider and A. H. Sobel, Eds., Princeton University Press, 219–251.

  • Sobel, A. H., and H. Gildor, 2003: A simple time-dependent model of SST hot spots. J. Climate, 16, 39783992, https://doi.org/10.1175/1520-0442(2003)016<3978:ASTMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., and J. D. Neelin, 2006: The boundary layer contribution to intertropical convergence zones in the quasi-equilibrium tropical circulation model framework. Theor. Comput. Fluid Dyn., 20, 323350, https://doi.org/10.1007/s00162-006-0033-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ting, M., 1994: Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 32863308, https://doi.org/10.1175/1520-0469(1994)051<3286:MONSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 14851493, https://doi.org/10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vialard, J., P. Delecluse, and C. Menkes, 2002: A modeling study of salinity variability and its effects in the tropical Pacific Ocean during the 1993–1999 period. J. Geophys. Res., 107, 8005, https://doi.org/10.1029/2000JC000758.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., A. Jayakumar, C. Gnanaseelan, M. Lengaigne, D. Sengupta, and B. N. Goswami, 2012: Processes of 30–90 days sea surface temperature variability in the northern Indian Ocean during boreal summer. Climate Dyn., 38, 19011916, https://doi.org/10.1007/s00382-011-1015-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., K. M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden–Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333358, https://doi.org/10.1175/1520-0469(1999)056<0333:TIOCSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., R. Murtugudde, and L. E. Lucas, 2004: Indo-Pacific Ocean response to atmospheric intraseasonal variability: 2. Boreal summer and the Intraseasonal Oscillation. J. Geophys. Res., 109, C03030, https://doi.org/10.1029/2003JC002002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1993: A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260284, https://doi.org/10.1175/1520-0469(1993)050<0260:ASTAMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 13861400, https://doi.org/10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 21102124, https://doi.org/10.1175/1520-0469(1983)040<2110:MOMLFV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE Pilot Study. Bull. Amer. Meteor. Soc., 83, 16031630, https://doi.org/10.1175/BAMS-83-11-1603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, M.-L. C., S. D. Schubert, M. J. Suarez, P. J. Pegion, and D. E. Waliser, 2006: Seasonality and meridional propagation of the MJO. J. Climate, 19, 19011921, https://doi.org/10.1175/JCLI3680.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, R., B. P. Kirtman, and K. Pegion, 2008: Local rainfall–SST relationship on subseasonal time scales in satellite observations and CFS. Geophys. Res. Lett., 35, L22706, https://doi.org/10.1029/2008GL035883.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xi, J., L. Zhou, R. Murtugudde, and L. Jiang, 2015: Impacts of intraseasonal SST anomalies on precipitation during Indian summer monsoon. J. Climate, 28, 45614575, https://doi.org/10.1175/JCLI-D-14-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, https://doi.org/10.1175/2009JCLI3329.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, X., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 35893605, https://doi.org/10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., and R. A. Weller, 2007: Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteor. Soc., 88, 527540, https://doi.org/10.1175/BAMS-88-4-527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, L., and T. Li, 2014: A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J. Climate, 27, 84138421, https://doi.org/10.1175/JCLI-D-14-00346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 802 192 26
PDF Downloads 792 179 20