The Nature of the Stochastic Wind Forcing of ENSO

Antonietta Capotondi University of Colorado, Cooperative Institute for Research in Environmental Sciences, and NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Antonietta Capotondi in
Current site
Google Scholar
PubMed
Close
,
Prashant D. Sardeshmukh University of Colorado, Cooperative Institute for Research in Environmental Sciences, and NOAA/Earth System Research Laboratory, Physical Sciences Division, Boulder, Colorado

Search for other papers by Prashant D. Sardeshmukh in
Current site
Google Scholar
PubMed
Close
, and
Lucrezia Ricciardulli Remote Sensing Systems, Santa Rosa, California

Search for other papers by Lucrezia Ricciardulli in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

El Niño–Southern Oscillation (ENSO) is commonly viewed as a low-frequency tropical mode of coupled atmosphere–ocean variability energized by stochastic wind forcing. Despite many studies, however, the nature of this broadband stochastic forcing and the relative roles of its high- and low-frequency components in ENSO development remain unclear. In one view, the high-frequency forcing associated with the subseasonal Madden–Julian oscillation (MJO) and westerly wind events (WWEs) excites oceanic Kelvin waves leading to ENSO. An alternative view emphasizes the role of the low-frequency stochastic wind components in directly forcing the low-frequency ENSO modes. These apparently distinct roles of the wind forcing are clarified here using a recently released high-resolution wind dataset for 1990–2015. A spectral analysis shows that although the high-frequency winds do excite high-frequency Kelvin waves, they are much weaker than their interannual counterparts and are a minor contributor to ENSO development. The analysis also suggests that WWEs should be viewed more as short-correlation events with a flat spectrum at low frequencies that can efficiently excite ENSO modes than as strictly high-frequency events that would be highly inefficient in this regard. Interestingly, the low-frequency power of the rapid wind forcing is found to be higher during El Niño than La Niña events, suggesting a role also for state-dependent (i.e., multiplicative) noise forcing in ENSO dynamics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Antonietta Capotondi, antonietta.capotondi@noaa.gov

Abstract

El Niño–Southern Oscillation (ENSO) is commonly viewed as a low-frequency tropical mode of coupled atmosphere–ocean variability energized by stochastic wind forcing. Despite many studies, however, the nature of this broadband stochastic forcing and the relative roles of its high- and low-frequency components in ENSO development remain unclear. In one view, the high-frequency forcing associated with the subseasonal Madden–Julian oscillation (MJO) and westerly wind events (WWEs) excites oceanic Kelvin waves leading to ENSO. An alternative view emphasizes the role of the low-frequency stochastic wind components in directly forcing the low-frequency ENSO modes. These apparently distinct roles of the wind forcing are clarified here using a recently released high-resolution wind dataset for 1990–2015. A spectral analysis shows that although the high-frequency winds do excite high-frequency Kelvin waves, they are much weaker than their interannual counterparts and are a minor contributor to ENSO development. The analysis also suggests that WWEs should be viewed more as short-correlation events with a flat spectrum at low frequencies that can efficiently excite ENSO modes than as strictly high-frequency events that would be highly inefficient in this regard. Interestingly, the low-frequency power of the rapid wind forcing is found to be higher during El Niño than La Niña events, suggesting a role also for state-dependent (i.e., multiplicative) noise forcing in ENSO dynamics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Antonietta Capotondi, antonietta.capotondi@noaa.gov
Save
  • Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic application. Bull. Amer. Meteor. Soc., 92, 157174, https://doi.org/10.1175/2010BAMS2946.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bianucci, M., 2016: Analytical probability density function for the statistics of the ENSO phenomenon: Asymmetry and power law tail. Geophys. Res. Lett., 43, 386394, https://doi.org/10.1002/2015GL066772.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Mon. Wea. Rev., 97, 163172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., 2013: ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118, 47554770, https://doi.org/10.1002/jgrc.20335.

  • Capotondi, A., and M. Alexander, 2001: Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr., 31, 34963515, https://doi.org/10.1175/1520-0485(2002)031<3496:RWITTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and P. D. Sardeshmukh, 2015: Optimal precursors of different types of ENSO events. Geophys. Res. Lett., 42, 99529960, https://doi.org/10.1002/2015GL066171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., M. A. Alexander, and C. Deser, 2003: Why are there Rossby wave maxima in the Pacific at 10°S and 13°N? J. Phys. Oceanogr., 33, 15491563, https://doi.org/10.1175/2407.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Capotondi, A., and Coauthors, 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921938, https://doi.org/10.1175/BAMS-D-13-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, M. H. Freilich, and R. F. Milliff, 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983, https://doi.org/10.1126/science.1091901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Equatorial Pacific easterly wind surges and the onset of La Niña events. J. Climate, 28, 776792, https://doi.org/10.1175/JCLI-D-14-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 52245238, https://doi.org/10.1175/JCLI3588.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fedorov, A. V., S. Hu, M. Lengaigne, and E. Guilyardi, 2015: The impact of westerly wind bursts and ocean initial state on the development and diversity of El Niño events. Climate Dyn., 44, 13811401, https://doi.org/10.1007/s00382-014-2126-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frankignoul, C., and K. Hasselmann, 1977: Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus, 29, 289305, https://doi.org/10.3402/tellusa.v29i4.11362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gebbie, G., I. Eisenman, A. T. Wittenberg, and E. Tziperman, 2007: Modulation of westerly wind bursts: A semistochastic feedback of ENSO. J. Atmos. Sci., 64, 32813295, https://doi.org/10.1175/JAS4029.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: AtmosphereOcean Dynamics. Academic Press, 662 pp.

  • Goldenberg, S. B., and J. J. O’Brien, 1981: Time and space variability of tropical Pacific wind stress. Mon. Wea. Rev., 109, 11901207, https://doi.org/10.1175/1520-0493(1981)109<1190:TASVOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and D. S. Luther, 1990: Surface winds from tropical Pacific islands—Climatological statistics. J. Climate, 3, 251271, https://doi.org/10.1175/1520-0442(1990)003<0251:SWFTPI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and G. A. Vecchi, 1997: Westerly wind events in the tropical Pacific, 1986–95. J. Climate, 10, 31313156, https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. M. Chiodi, 2009: Pre- and post-1997/98 westerly wind events and equatorial Pacific cold tongue warming. J. Climate, 22, 568581, https://doi.org/10.1175/2008JCLI2270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., and A. V. Fedorov, 2016: Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA, 113, 20052010, https://doi.org/10.1073/pnas.1514182113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, S., A. V. Fedorov, M. Lengaigne, and E. Guilyardi, 2014: The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett., 41, 46544663, https://doi.org/10.1002/2014GL059573.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F.-F., A. Timmermann, and J. Zhao, 2007: Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett., 34, L03807, https://doi.org/10.1029/2006GL027372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julian, P., 1975: Comments on the determination of significance levels of the coherence statistic. J. Atmos. Sci., 32, 836837, https://doi.org/10.1175/1520-0469(1975)032<0836:COTDOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kessler, W. S., and R. Kleeman, 2000: Rectification of the Madden–Julian oscillation into the ENSO cycle. J. Climate, 13, 35603575, https://doi.org/10.1175/1520-0442(2000)013<3560:ROTMJO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, K. P. Sooraj, and I.-S. Kang, 2008: State-dependent atmospheric noise associated with ENSO. Geophys. Res. Lett., 35, L05701, https://doi.org/10.1029/2007GL032017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 14991515, https://doi.org/10.1175/2008JCLI2624.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A. T. Wittenberg, 2010: Warm pool and cold tongue El Niño events as simulated by the GFDL CM2.1 coupled GCM. J. Climate, 23, 12261239, https://doi.org/10.1175/2009JCLI3293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lengaigne, M., E. Guilyardi, J. P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Niño by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601620, https://doi.org/10.1007/s00382-004-0457-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett., 43, 65036510, https://doi.org/10.1002/2016GL069204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., and F.-F. Jin, 2017: A simple approach to quantifying the noise–ENSO interaction. Part I: Deducing the state-dependency of the wind stress forcing using monthly mean data. Climate Dyn., 48, 118, https://doi.org/10.1007/s00382-015-2748-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levine, A. F. Z., F.-F. Jin, and M. F. Stueker, 2017: A simple approach to quantifying the noise-ENSO interaction. Part II: The role of coupling between the warm pool and equatorial zonal wind anomalies. Climate Dyn., 48, 1937, https://doi.org/10.1007/s00382-016-3268-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, H., B. P. Kirtman, E. Tziperman, and G. Gebbie, 2013: Impact of interactive westerly wind bursts on CCSM3. Dyn. Atmos. Oceans, 59, 2451, https://doi.org/10.1016/j.dynatmoce.2012.11.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, S., A. Sen Gupta, D. Dommenget, T. Lee, M. J. McPhaden, and W. S. Kessler, 2017: Factors influencing the skill of synthesized satellite wind products in the tropical Pacific. J. Geophys. Res. Oceans, 122, 10721089, https://doi.org/10.1002/2016JC012340.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., 1999: Genesis and evolution of the 1997–98 El Niño. Science, 283, 950954, https://doi.org/10.1126/science.283.5404.950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., H. P. Freitag, S. P. Hayes, B. A. Taft, Z. Chen, and K. Wyrtki, 1988: The response of the equatorial Pacific Ocean to a westerly wind burst in May 1986. J. Geophys. Res., 93, 10 58910 603, https://doi.org/10.1029/JC093iC09p10589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of westerly wind events in the possible development of an El Niño in 2014. Geophys. Res. Lett., 41, 64766483, https://doi.org/10.1002/2014GL061186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, M., and P. D. Sardeshmukh, 2017: Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys. Res. Lett., 44, 85208529, https://doi.org/10.1002/2017GL074088.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Penland, C., and P. Sardeshmukh, 1995: The optimal growth of tropical SST anomalies. J. Climate, 8, 19992024, https://doi.org/10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., J. Vialard, M. Lengaigne, and E. Guilyardi, 2016: Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Climate Dyn., 46, 21552178, https://doi.org/10.1007/s00382-015-2695-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puy, M., and Coauthors, 2018: Influence of westerly wind events stochasticity on El Niño amplitude: The case of 2014 vs. 2015. Climate Dyn., https://doi.org/10.1007/s00382-017-3938-9, in press.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, https://doi.org/10.1175/2007JCLI1824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ricciardulli, L., and Coauthors, Eds., 2017: The Climate Data Guide. CCMP: Cross-Calibrated Multi-Platform wind vector analysis. UCAR, accessed 2017, https://climatedataguide.ucar.edu/climate-data/ccmp-cross-calibrated-multi-platform-wind-vector-analysis.

  • Rong, X., R. Zhang, T. Li, and J. Su, 2011: Upscale feedback of high-frequency winds to ENSO. Quart. J. Roy. Meteor. Soc., 137, 894907, https://doi.org/10.1002/qj.804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and J. D. Neelin, 2000: The response of an ENSO model to climate noise, weather noise, and intraseasonal forcing. Geophys. Res. Lett., 27, 37233726, https://doi.org/10.1029/2000GL011941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and G. N. Kiladis, 2006: Observed relationship between oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 52535272, https://doi.org/10.1175/JCLI3893.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and C. Penland, 2015: Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions. Chaos, 25, 036410, https://doi.org/10.1063/1.4914169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics. Mon. Wea. Rev., 135, 33253345, https://doi.org/10.1175/MWR3477.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat. Geosci., 6, 540544, https://doi.org/10.1038/ngeo1826.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1984: Some effects of finite sample size and persistence on meteorological statistics. Part I: Autocorrelations. Mon. Wea. Rev., 112, 23592368, https://doi.org/10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tziperman, E., and L. Yu, 2007: Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J. Climate, 20, 27602768, https://doi.org/10.1175/JCLI4138a.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., A. T. Wittenberg, and A. Rosati, 2006: Reassessing the role of stochastic forcing in the 1997–98 El Niño. Geophys. Res. Lett., 33, L01706, https://doi.org/10.1029/2005GL024738.

    • Search Google Scholar
    • Export Citation
  • Vimont, D., M. A. Alexander, and M. Newman, 2014: Optimal growth of central and east Pacific ENSO events. Geophys. Res. Lett., 41, 40274034, https://doi.org/10.1002/2014GL059997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., J. Scott, R. Hoffman, M. Leidner, R. Atlas, and J. Ardizzone, 2015: Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean vector wind analysis product on 0.25° grid, version 2.0. Remote Sensing System, accessed 2017, www.remss.com/measurements/ccmp.

  • Wittenberg, A. T., 2004: Extended wind stress analyses for ENSO. J. Climate, 17, 25262540, https://doi.org/10.1175/1520-0442(2004)017<2526:EWSAFE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and T. W. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J. Geophys. Res., 108, 3128, https://doi.org/10.1029/2002JC001498.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zavala-Garay, J., C. Zhang, A. M. Moore, A. T. Wittenberg, M. J. Harrison, A. Rosati, J. Vialard, and R. Kleeman, 2008: Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J. Climate, 21, 37043721, https://doi.org/10.1175/2007JCLI1188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, C. D., and J. Gottschalck, 2002: SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J. Climate, 15, 24292445, https://doi.org/10.1175/1520-0442(2002)015<2429:SAOEAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1168 366 30
PDF Downloads 970 338 34