Human Contribution to the Increasing Summer Precipitation in Central Asia from 1961 to 2013

Dongdong Peng State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, Institute of Tropical and Marine Meteorology, China Meteorological Administration, Guangzhou, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Dongdong Peng in
Current site
Google Scholar
PubMed
Close
,
Tianjun Zhou State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Tianjun Zhou in
Current site
Google Scholar
PubMed
Close
,
Lixia Zhang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Lixia Zhang in
Current site
Google Scholar
PubMed
Close
, and
Bo Wu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Bo Wu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ecosystem and societal development over arid Central Asia, the core connecting region of the Silk Road Economic Belt, are highly sensitive to climate change. The results derived from multiobservational datasets show that summer precipitation over Central Asia has significantly increased by 20.78% from 1961 to 2013. It remains unclear whether anthropogenic forcing has contributed to the summer wetting trend or not. In this study, the corresponding physical processes and contributions of anthropogenic forcing are investigated by comparing reanalysis and experiments of the Community Atmosphere Model, version 5.1 (CAM5.1), from the CLIVAR Climate of the Twentieth Century Plus (C20C+) Project. The observed wetting trend is well reproduced in the simulation driven by all radiative forcings (CAM5-All), but poorly reproduced in the simulation with natural forcings only (CAM5-Nat), confirming the important role of human contribution in the observed wetting trend. Moisture budget analysis shows that the observed wetting trend is dominated by the increasing vertical moisture advection term and results from enhanced vertical motion over nearly all of Central Asia. The observed contributions of moisture budget components to the wetting trend are only captured by CAM5-All experiments. The dynamic contribution is determined by the warm advection anomalies in association with a human-induced meridional uneven warm pattern. Human-induced warming increases the specific humidity over all of Central Asia, increasing (decreasing) the precipitation over the climatological ascent (descent) region in eastern (western) Central Asia.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn

Abstract

The ecosystem and societal development over arid Central Asia, the core connecting region of the Silk Road Economic Belt, are highly sensitive to climate change. The results derived from multiobservational datasets show that summer precipitation over Central Asia has significantly increased by 20.78% from 1961 to 2013. It remains unclear whether anthropogenic forcing has contributed to the summer wetting trend or not. In this study, the corresponding physical processes and contributions of anthropogenic forcing are investigated by comparing reanalysis and experiments of the Community Atmosphere Model, version 5.1 (CAM5.1), from the CLIVAR Climate of the Twentieth Century Plus (C20C+) Project. The observed wetting trend is well reproduced in the simulation driven by all radiative forcings (CAM5-All), but poorly reproduced in the simulation with natural forcings only (CAM5-Nat), confirming the important role of human contribution in the observed wetting trend. Moisture budget analysis shows that the observed wetting trend is dominated by the increasing vertical moisture advection term and results from enhanced vertical motion over nearly all of Central Asia. The observed contributions of moisture budget components to the wetting trend are only captured by CAM5-All experiments. The dynamic contribution is determined by the warm advection anomalies in association with a human-induced meridional uneven warm pattern. Human-induced warming increases the specific humidity over all of Central Asia, increasing (decreasing) the precipitation over the climatological ascent (descent) region in eastern (western) Central Asia.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. Tianjun Zhou, zhoutj@lasg.iap.ac.cn
Save
  • Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224232, https://doi.org/10.1038/nature01092.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp., www.fao.org/docrep/X0490E/X0490E00.htm.

  • Angélil, O., D. Stone, M. Wehner, C. J. Paciorek, H. Krishnan, and W. Collins, 2017: An independent assessment of anthropogenic attribution statements for recent extreme temperature and rainfall events. J. Climate, 30, 516, https://doi.org/10.1175/JCLI-D-16-0077.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhend, J., and H. Von Storch, 2008: Consistency of observed winter precipitation trends in northern Europe with regional climate change projections. Climate Dyn., 31, 1728, https://doi.org/10.1007/s00382-007-0335-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M. Y., P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeor., 3, 249266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., and C.-W. Lan, 2012: Changes in the annual range of precipitation under global warming. J. Climate, 25, 222235, https://doi.org/10.1175/JCLI-D-11-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chou, C., J. C. H. Chiang, C.-W. Lan, C.-H. Chung, Y.-C. Liao, and C.-J. Lee, 2013: Increase in the range between wet and dry season precipitation. Nat. Geosci., 6, 263267 https://doi.org/10.1038/ngeo1744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, https://doi.org/10.1038/ngeo2201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Folland, C., D. Stone, C. Frederiksen, D. Karoly, and J. Kinter, 2014: The International CLIVAR Climate of the 20th Century Plus (C20C+) Project: Report of the sixth workshop. CLIVAR Exchanges, No. 19, International CLIVAR Project Office, Southampton, United Kingdom, 57–59.

  • Gillett, N. P., A. J. Weaver, F. W. Zwiers, and M. F. Wehner, 2004: Detection of volcanic influence on global precipitation. Geophys. Res. Lett., 31, L12217, https://doi.org/10.1029/2004GL020044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I. C., and P. D. Jones, 2017: CRU TS4.00: Climatic Research Unit (CRU) Time-Series (TS) version 4.00 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901-Dec. 2015). Centre for Environmental Data Analysis, accessed 25 May 2017, https://doi.org/10.5285/edf8febfdaad48abb2cbaf7d7e846a86.

    • Crossref
    • Export Citation
  • Hegerl, G., and F. W. Zwiers, 2011: Use of models in detection and attribution of climate change. Wiley Interdiscip. Rev.: Climate Change, 2, 570591, https://doi.org/10.1002/wcc.121.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 56865699, https://doi.org/10.1175/JCLI3990.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Z., Q. Zhou, X. Chen, Q. Cheng, S. Wang, and J. Li, 2017: Variations and changes of annual precipitation in Central Asia over the last century. Int. J. Climatol., 37, 157170, https://doi.org/10.1002/joc.4988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J. P., M. Ji, Y. K. Xie, S. Wang, Y. He, and J. Ran, 2016: Global semi-arid climate change over last 60 years. Climate Dyn., 46, 11311150, https://doi.org/10.1007/s00382-015-2636-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, J. P., H. P. Yu, A. Dai, and L. T. Kang, 2017: Drylands face potential threat under 2°C global warming target. Nat. Climate Change, 7, 417422, https://doi.org/10.1038/nclimate3275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., J. H. Chen, X. Zhang, S. Feng, and F. Chen, 2015a: Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci. China Earth Sci., 58, 676684, https://doi.org/10.1007/s11430-015-5057-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W., S. Feng, J. H. Chen, and F. Chen, 2015b: Physical mechanisms of summer precipitation variations in the Tarim basin in northwestern China. J. Climate, 28, 35793591, https://doi.org/10.1175/JCLI-D-14-00395.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Crossref
    • Export Citation
  • Knutson, T. R., F. Zeng, and A. T. Wittenberg, 2013: Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J. Climate, 26, 87098743, https://doi.org/10.1175/JCLI-D-12-00567.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lambert, F. H., P. A. Stott, M. R. Allen, and M. A. Palmer, 2004: Detection and attribution of changes in 20th century land precipitation. Geophys. Res. Lett., 31, L10203, https://doi.org/10.1029/2004GL019545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, B., Y. N. Chen, Z. S. Chen, H. G. Xiong, and L. S. Lian, 2016: Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010? Atmos. Res., 167, 275284, https://doi.org/10.1016/j.atmosres.2015.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, C. Li, and N. Henderson, 2015: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Climate, 28, 41074125, https://doi.org/10.1175/JCLI-D-14-00559.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., M. Ting, and D. E. Lee, 2018: Fast adjustments of the Asian summer monsoon to anthropogenic aerosols. Geophys. Res. Lett., 45, 10011010, https://doi.org/10.1002/2017GL076667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, A. Dai, and Z. Han, 2015: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013. J. Climate, 28, 69606978, https://doi.org/10.1175/JCLI-D-15-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., T. Zhou, D. A. Stone, O. Angélil, and H. Shiogama, 2017a: Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions. Environ. Res. Lett., 12, 054020, https://doi.org/10.1088/1748-9326/aa69d2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, S., and Coauthors, 2017b: Detectable anthropogenic shift toward heavy precipitation over eastern China. J. Climate, 30, 13811396, https://doi.org/10.1175/JCLI-D-16-0311.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mariotti, A., 2007: How ENSO impacts precipitation in southwest Central Asia. Geophys. Res. Lett., 34, L16706, https://doi.org/10.1029/2007GL030078.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. B. Zhang, and F. W. Zwiers, 2008: Human-induced Arctic moistening. Science, 320, 518520, https://doi.org/10.1126/science.1153468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S. K., X. B. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378381, https://doi.org/10.1038/nature09763.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noake, K., D. Polson, G. Hegerl, and X. Zhang, 2012: Changes in seasonal land precipitation during the latter twentieth‐century. Geophys. Res. Lett., 39, L03706, https://doi.org/10.1029/2011GL050405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, D., and T. Zhou, 2017: Why was the arid and semiarid northwest China getting wetter in the recent decades? J. Geophys. Res. Atmos., 122, 90609075, https://doi.org/10.1002/2016JD026424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polson, D., G. C. Hegerl, X. B. Zhang, and T. J. Osborn, 2013: Causes of robust seasonal land precipitation changes. J. Climate, 26, 66796697, https://doi.org/10.1175/JCLI-D-12-00474.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sarojini, B. B., P. A. Stott, and E. Black, 2016: Detection and attribution of human influence on regional precipitation. Nat. Climate Change, 6, 669675, https://doi.org/10.1038/nclimate2976.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, B. Rudolf, and M. Ziese, 2015: GPCC full data reanalysis version 7.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. GPCC, accessed 1 July 2017, https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050.

    • Crossref
    • Export Citation
  • Seager, R., N. Naik, and G. A. Vecchi, 2010: Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Climate, 23, 46514668, https://doi.org/10.1175/2010JCLI3655.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shi, Y. F., Y. P. Shen, E. Kang, D. L. Li, Y. J. Ding, G. W. Zhang, and R. J. Hu, 2007: Recent and future climate change in northwest China. Climatic Change, 80, 379393, https://doi.org/10.1007/s10584-006-9121-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F., T. Zhou, and Y. Qian, 2014: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys. Res. Lett., 41, 596603, https://doi.org/10.1002/2013GL058705.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stone, D. A., and Coauthors, 2018: A basis set for exploration of sensitivity to prescribed ocean conditions for estimating human contributions to extreme weather in CAM5.1-1degree. Wea. Climate Extremes, 19, 1019, https://doi.org/10.1016/j.wace.2017.12.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., N. P. Gillett, G. C. Hegerl, D. J. Karoly, D. A. Stone, X. Zhang, and F. Zwiers, 2010: Detection and attribution of climate change: A regional perspective. Wiley Interdiscip. Rev.: Climate Change, 1, 192211, https://doi.org/10.1002/wcc.34.

    • Search Google Scholar
    • Export Citation
  • Wan, H., X. B. Zhang, F. W. Zwiers, and S. K. Min, 2015: Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Climate Dyn., 45, 17131726, https://doi.org/10.1007/s00382-014-2423-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, T., and K. Yamazaki, 2014: Decadal-scale variation of South Asian summer monsoon onset and its relationship with the Pacific decadal oscillation. J. Climate, 27, 51635173, https://doi.org/10.1175/JCLI-D-13-00541.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, W., R. Zhang, M. Wen, and S. Yang, 2017: Relationship between the Asian westerly jet stream and summer rainfall over Central Asia and north China: Roles of the Indian monsoon and the South Asian high. J. Climate, 30, 537552, https://doi.org/10.1175/JCLI-D-15-0814.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., F. W. Zwiers, G. C. C. Hegerl, F. H. Lambert, N. P. Gillett, S. Solomon, P. A. Stott, and T. Nozawa, 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, https://doi.org/10.1038/nature06025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. B., H. Wan, F. W. Zwiers, G. C. C. Hegerl, and S. K. Min, 2013: Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett., 40, 52525257, https://doi.org/10.1002/grl.51010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., A. Huang, Y. Zhou, D. Huang, Q. Yang, Y. Ma, M. Li, and G. Wei, 2014: Impact of the middle and upper tropospheric cooling over Central Asia on the summer rainfall in the Tarim basin, China. J. Climate, 27, 47214732, https://doi.org/10.1175/JCLI-D-13-00456.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L. T., and R. H. Huang, 2010: Interdecadal variability of summer rainfall in northwest China and its possible causes. Int. J. Climatol., 30, 549557, https://doi.org/10.1002/joc.1923.

    • Search Google Scholar
    • Export Citation
  • Zhou, T., and J. Zhang, 2009: Harmonious inter-decadal changes of July–August upper tropospheric temperature across the North Atlantic, Eurasian continent, and North Pacific. Adv. Atmos. Sci., 26, 656665, https://doi.org/10.1007/s00376-009-9020-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1200 349 16
PDF Downloads 1342 383 16