The Influence of CO2 Forcing on North American Monsoon Moisture Surges

Salvatore Pascale NOAA/Geophysical Fluid Dynamics Laboratory, and Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey

Search for other papers by Salvatore Pascale in
Current site
Google Scholar
PubMed
Close
,
Sarah B. Kapnick NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Sarah B. Kapnick in
Current site
Google Scholar
PubMed
Close
,
Simona Bordoni California Institute of Technology, Pasadena, California

Search for other papers by Simona Bordoni in
Current site
Google Scholar
PubMed
Close
, and
Thomas L. Delworth NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

Search for other papers by Thomas L. Delworth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Widespread multiday convective bursts in the southwestern United States during the North American monsoon are often triggered by Gulf of California moisture surges (GoC surges). However, how GoC surges, and the amount and intensity of associated precipitation, will change in response to CO2-induced warming remains little known, not least because the most widely available climate models do not currently resolve the relevant mesoscale dynamics because of their coarse resolution (100 km or more). In this study, a 50-km-resolution global coupled model is used to address this question. It is found that the mean number of GoC surge events remains unchanged under CO2 doubling, but intermediate-to-high intensity surge-related precipitation tends to become less frequent, thus reducing the mean summertime rainfall. Low-level moisture fluxes associated with GoC surges as well as their convergence over land to the east of the GoC intensify, but the increases in low-level moisture are not matched by the larger increments in the near-surface saturation specific humidity because of amplified land warming. This results in a more unsaturated low-level atmospheric environment that disfavors moist convection. These thermodynamic changes are accompanied by dynamic changes that are also detrimental to convective activity, with the midlevel monsoonal ridge projected to expand and move to the west of its present-day climatological maximum. Despite the overall reduction in precipitation, the frequency of very intense, localized daily surge-related precipitation in Arizona and surrounding areas is projected to increase with increased precipitable water.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0007.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Salvatore Pascale, salvatore.pascale@noaa.gov

Abstract

Widespread multiday convective bursts in the southwestern United States during the North American monsoon are often triggered by Gulf of California moisture surges (GoC surges). However, how GoC surges, and the amount and intensity of associated precipitation, will change in response to CO2-induced warming remains little known, not least because the most widely available climate models do not currently resolve the relevant mesoscale dynamics because of their coarse resolution (100 km or more). In this study, a 50-km-resolution global coupled model is used to address this question. It is found that the mean number of GoC surge events remains unchanged under CO2 doubling, but intermediate-to-high intensity surge-related precipitation tends to become less frequent, thus reducing the mean summertime rainfall. Low-level moisture fluxes associated with GoC surges as well as their convergence over land to the east of the GoC intensify, but the increases in low-level moisture are not matched by the larger increments in the near-surface saturation specific humidity because of amplified land warming. This results in a more unsaturated low-level atmospheric environment that disfavors moist convection. These thermodynamic changes are accompanied by dynamic changes that are also detrimental to convective activity, with the midlevel monsoonal ridge projected to expand and move to the west of its present-day climatological maximum. Despite the overall reduction in precipitation, the frequency of very intense, localized daily surge-related precipitation in Arizona and surrounding areas is projected to increase with increased precipitable water.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0007.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Salvatore Pascale, salvatore.pascale@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 2.90 MB)
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the Southwest during the North American monsoon. Mon. Wea. Rev., 137, 8398, https://doi.org/10.1175/2008MWR2502.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arriaga-Ramírez, S., and T. Cavazos, 2010: Regional trends of daily precipitation indices in northwest Mexico and southwest United States. J. Geophys. Res., 115, D14111, https://doi.org/10.1029/2009JD013248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Balling, R. C., 1987: Diurnal variations in Arizona monsoon precipitation frequencies. Mon. Wea. Rev., 115, 342346, https://doi.org/10.1175/1520-0493(1987)115<0342:DVIAMP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, E. J., and E. H. Berbery, 2008: The diurnal cycle of precipitation over the North America monsoon region during the NAME 2004 field campaign. J. Climate, 21, 771787, https://doi.org/10.1175/2007JCLI1642.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

  • Berbery, E. H., 2001: Mesoscale moisture analysis of the North American monsoon. J. Climate, 14, 121137, https://doi.org/10.1175/1520-0442(2001)013<0121:MMAOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., P. Kallberg, S. Kobayashi, D. Dee, S. Uppala, A. J. Simmons, P. Poli, and H. Sato, 2011a: Atmospheric conservation properties in ERA-Interim. Quart. J. Roy. Meteor. Soc., 137, 13811399, https://doi.org/10.1002/qj.864.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berrisford, P., and Coauthors, 2011b: The ERA-Interim archive, version 2.0. ECMWF ERA Tech. Rep. 1, 23 pp., https://www.ecmwf.int/sites/default/files/elibrary/2011/8174-era-interim-archive-version-20.pdf.

  • Bhattacharya, T., J. E. Tierney, and P. DiNezio, 2017: Glacial reduction of the North American monsoon via surface cooling and atmospheric ventilation. Geophys. Res. Lett., 44, 51135122, https://doi.org/10.1002/2017GL073632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, https://doi.org/10.1175/2009JCLI2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and B. Stevens, 2006: Principal component analysis of the summertime winds over the Gulf of California: A gulf surge index. Mon. Wea. Rev., 134, 33953414, https://doi.org/10.1175/MWR3253.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brenner, I. S., 1974: A surge of maritime tropical air—Gulf of California to the southwestern United States. Mon. Wea. Rev., 102, 375389, https://doi.org/10.1175/1520-0493(1974)102<0375:ASOMTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brewer, M. C., and C. F. Mass, 2016: Projected changes in western U.S. large-scale summer synoptic circulations and variability in CMIP5 models. J. Climate, 29, 59655978, https://doi.org/10.1175/JCLI-D-15-0598.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., D. J. Gochis, and L. O. Mearns, 2013: Toward assessing NARCCAP regional climate model credibility for the North American monsoon: Current climate simulations. J. Climate, 26, 88028826, https://doi.org/10.1175/JCLI-D-12-00538.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Byrne, M. P., and P. A. O’Gorman, 2018: Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl. Acad. Sci. USA, 115, 48634868, https://doi.org/10.1073/pnas.1722312115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 98809902, https://doi.org/10.1175/JCLI-D-12-00549.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007a: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38403865, https://doi.org/10.1175/JCLI4211.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., S. D. Schubert, and P. J. Pegion, 2007b: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887, https://doi.org/10.1175/JCLI4212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, H.-I., C. L. Castro, C. M. Carrillo, and F. Dominguez, 2015: The more extreme nature of U.S. warm season climate in the recent observational record and two “well-performing” dynamically downscaled CMIP3 models. J. Geophys. Res. Atmos., 120, 82448263, https://doi.org/10.1002/2015JD023333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. W. Higgins, and J. E. Janowiak, 2008a: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res., 113, D04110, https://doi.org/10.1029/2007JD009132.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and Coauthors, 2008b: CPC unified gauge-based analysis of global daily precipitation. Western Pacific Geophysics Meeting, Cairns, Australia, Amer. Geophys. Union, http://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/DOCU/Chen_et_al_2008_Daily_Gauge_Anal.pdf.

  • Christidis, N., and P. A. Stott, 2015: Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett., 42, 10 79810 806, https://doi.org/10.1002/2015GL066669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., and R. Seager, 2013: The response of the North American monsoon to increased greenhouse gas forcing. J. Geophys. Res. Atmos., 118, 16901699, https://doi.org/10.1002/jgrd.50111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crimmins, M. A., 2006: Arizona and the North American monsoon system. University of Arizona Cooperative Extension, AZ1417, https://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1417.pdf.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and F. Zeng, 2014: Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci., 7, 583587, https://doi.org/10.1038/ngeo2201.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, 27552781, https://doi.org/10.1175/JCLI-D-11-00316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., F. Zeng, G. A. Vecchi, X. Yang, L. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci., 9, 509512, https://doi.org/10.1038/ngeo2738.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651667, https://doi.org/10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161122, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. Mitchell, 2014: A partial mechanistic understanding of the North American monsoon. J. Geophys. Res. Atmos., 119, 13 09613 115, https://doi.org/10.1002/2014JD022038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Favors, J. E., and J. T. Abatzoglou, 2013: Regional surges of monsoonal moisture into the southwestern United States. Mon. Wea. Rev., 141, 182191, https://doi.org/10.1175/MWR-D-12-00037.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 138, 35403555, https://doi.org/10.1175/2010MWR3369.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuller, R. D., and D. J. Stensrud, 2000: The relationship between tropical easterly waves and surges over the Gulf of California during the North American monsoon. Mon. Wea. Rev., 128, 298306, https://doi.org/10.1175/1520-0493(2000)128<2983:TRBTEW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geil, K. L., Y. L. Serra, and X. Zeng, 2013: Assessment of CMIP5 model simulations of the North American monsoon system. J. Climate, 26, 87878801, https://doi.org/10.1175/JCLI-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1972: Surges of maritime tropical air northward over the Gulf of California. Mon. Wea. Rev., 100, 29832989, https://doi.org/10.1175/1520-0493(1972)100<0298:SOMTAN>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., and S.-J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL High Resolution Atmospheric Model. J. Climate, 27, 48904910, https://doi.org/10.1175/JCLI-D-13-00596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, L. M., S.-J. Lin, and C. Tu, 2016: High-resolution climate simulations using GFDL HiRAM with a stretched global grid. J. Climate, 29, 42934314, https://doi.org/10.1175/JCLI-D-15-0389.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, and X. L. Wang, 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 298306, https://doi.org/10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., W. Shi, and C. Hain, 2004: Relationships between Gulf of California moisture surges and precipitation in the southwestern United States. J. Climate, 17, 29832997, https://doi.org/10.1175/1520-0442(2004)017<2983:RBGOCM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., and N. Lau, 2008: Intraseasonal teleconnection between North American and western North Pacific monsoons with 20-day time scale. J. Climate, 21, 26642679, https://doi.org/10.1175/2007JCLI2024.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., T. L. Delworth, M. Ashfaq, S. Malyshev, and P. C. D. Milly, 2014: Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci., 7, 834840, https://doi.org/10.1038/ngeo2269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 13401359, https://doi.org/10.1175/2008JCLI2368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and E. A. Hall-McKim, 2004: Intraseasonal modulation of precipitation over the North American monsoon region. 15th Symp. on Global Change and Climate Variations, Seattle, WA, Amer. Meteor. Soc., 11.4, http://ams.confex.com/ams/pdfpapers/72428.pdf.

  • King, T. S., and R. C. Balling, 1994: Diurnal variations in Arizona monsoon lightning data. Mon. Wea. Rev., 122, 16591664, https://doi.org/10.1175/1520-0493(1994)122<1659:DVIAML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, https://doi.org/10.1175/JCLI-D-15-0726.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007a: An analysis of the warm-season diurnal cycle over the continental Unites States and northern Mexico in general circulation models. J. Hydrometeor., 8, 344366, https://doi.org/10.1175/JHM581.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, M.-I., and Coauthors, 2007b: Sensitivity to horizontal resolution in the AGCM simulations of warm season diurnal cycle of precipitation over the United States and northern Mexico. J. Climate, 20, 18621881, https://doi.org/10.1175/JCLI4090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X.-Z., J. Zhu, K. E. Kunkel, M. Ting, and J. X. L. Wang, 2008: Do CGCMs simulate the North American monsoon precipitation seasonal–interannual variability? J. Climate, 21, 44244448, https://doi.org/10.1175/2008JCLI2174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333343, https://doi.org/10.1175/JCLI3684.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., C. L. Castro, H.-I. Chang, T. Lahmers, D. K. Adams, and C. A. Ochoa-Moya, 2017: The more extreme nature of North American monsoon precipitation in the southwestern United States as revealed by a historical climatology of simulated severe weather events. J. Appl. Meteor. Climatol., 56, 25092529, https://doi.org/10.1175/JAMC-D-16-0358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luong, T. M., C. L. Castro, T. M. Nguyen, W. W. Cassell, and H.-I. Chang, 2018: Improvement in the modeled representation of North American monsoon precipitation using a modified Kain–Fritsch convective parameterization scheme. Atmosphere, 9, 31, https://doi.org/10.3390/atmos9010031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, https://doi.org/10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Coauthors, 2014: North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Climate, 27, 22302270, https://doi.org/10.1175/JCLI-D-13-00273.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazon, J. J., C. L. Castro, D. K. Adams, H.-I. Chang, C. M. Carrillo, and J. Brost, 2016: Objective climatological analysis of extreme weather events in Arizona during the North American monsoon. J. Climate Appl. Meteor., 55, 24312450, https://doi.org/10.1175/JAMC-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–845.

  • Mejia, J. F., M. W. Douglas, and P. J. Lamb, 2016: Observational investigation of relationships between moisture surges and mesoscale- to large-scale convection during the North American monsoon. Int. J. Climatol., 36, 25552569, https://doi.org/10.1002/joc.4512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, J. D. D., and J. Jin, 2016: Bias correction of the CCSM4 for improved regional climate modeling of the North American monsoon. Climate Dyn., 46, 29612976, https://doi.org/10.1007/s00382-015-2744-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., D. Ivanova, R. Rabin, T. J. Brown, and K. Redmond, 2002: Gulf of California sea surface temperatures and the North American monsoon: Mechanistic implications from observations. J. Climate, 15, 22612281, https://doi.org/10.1175/1520-0442(2002)015<2261:GOCSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., J.-K. Schemm, H. M. H. Juang, R. W. Higgins, and Y. Song, 2005: Impact of model resolution on the prediction of summer precipitation over the United States and Mexico. J. Climate, 18, 39103927, https://doi.org/10.1175/JCLI3513.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, A. W., and Coauthors, 2015: National Weather Service forecasters use GPS precipitable water vapor for enhanced situational awareness during the Southern California summer monsoon. Bull. Amer. Meteor. Soc., 96, 18671877, https://doi.org/10.1175/BAMS-D-14-00095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa–Schubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 9781002, https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murakami, H., and Coauthors, 2012: Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J. Climate, 25, 32373260, https://doi.org/10.1175/JCLI-D-11-00415.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and R. H. Johnson, 2012: Simulation of a North American monsoon gulf surge event and comparison to observations. Mon. Wea. Rev., 140, 25342554, https://doi.org/10.1175/MWR-D-11-00223.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newman, A. J., and R. H. Johnson, 2013: Dynamics of a simulated North American monsoon gulf surge event. Mon. Wea. Rev., 141, 32383253, https://doi.org/10.1175/MWR-D-12-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., and S. Bordoni, 2016: Tropical and extratropical controls of Gulf of California surges and summertime precipitation over the southwestern United States. Mon. Wea. Rev., 144, 26952718, https://doi.org/10.1175/MWR-D-15-0429.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., S. Bordoni, S. B. Kapnick, G. A. Vecchi, L. Jia, T. L. Delworth, S. Underwood, and W. Anderson, 2016: The impact of horizontal resolution on North American monsoon Gulf of California moisture surges in a suite of coupled global climate models. J. Climate, 29, 79117936, https://doi.org/10.1175/JCLI-D-16-0199.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pascale, S., W. R. Boos, S. Bordoni, T. L. Delworth, S. B. Kapnick, H. Murakami, G. A. Vecchi, and W. Zhang, 2017: Weakening of the North American monsoon with global warming. Nat. Climate Change, 7, 806812, https://doi.org/10.1038/nclimate3412.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., R. M. Rasmussen, K. Ikeda, C. Liu, M. P. Clark, and G. J. Holland, 2017a: The future intensification of hourly precipitation extremes. Nat. Climate Change, 7, 4852, https://doi.org/10.1038/nclimate3168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark, 2017b: Increased rainfall volume from future convective storms in the US. Nat. Climate Change, 7, 880884, https://doi.org/10.1038/s41558-017-0007-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and Coauthors, 2014: A vision for future observations for western U.S. extreme precipitation and flooding. J. Contemp. Water Res. Educ., 153, 1632, https://doi.org/10.1111/j.1936-704X.2014.03176.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ray, A. J., G. M. Garfin, M. Wilder, M. Vasquez-León, M. Lenart, and A. C. Comrie, 2007: Applications of monsoon research: Opportunities to inform decision making and reduce regional vulnerability. J. Climate, 20, 16081627, https://doi.org/10.1175/JCLI4098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, P. J., and R. H. Johnson, 2007: Analysis of the 13–14 July gulf surge event during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 135, 30983117, https://doi.org/10.1175/MWR3450.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryu, J.-H., and K. Hayhoe, 2014: Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations. Climate Dyn., 42, 32333252, https://doi.org/10.1007/s00382-013-1801-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schiffer, N. J., and S. W. Nesbitt, 2012: Flow, moisture, and thermodynamic variability associated with Gulf of California surges within the North American monsoon. J. Climate, 25, 42204241, https://doi.org/10.1175/JCLI-D-11-00266.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, https://doi.org/10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U., A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf, 2014: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seastrand, S., Y. Serra, C. Castro, and E. Ritchie, 2015: The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol., 35, 20192032, https://doi.org/10.1002/joc.4104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and K. Geil, 2017: Historical and projected eastern Pacific and intra-Americas sea TD-wave activity in a selection of IPCC AR5 models. J. Climate, 30, 22692294, https://doi.org/10.1175/JCLI-D-16-0453.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seth, A., S. A. Rauscher, M. Rojas, A. Giannini, and S. J. Camargo, 2011: Enhanced spring convective barrier for monsoons in a warmer world? Climatic Change, 104, 403414, https://doi.org/10.1007/s10584-010-9973-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., R. L. Gall, and M. K. Nordquist, 1997: Surges over the Gulf of California during the Mexican monsoon. Mon. Wea. Rev., 125, 417437, https://doi.org/10.1175/1520-0493(1997)125<0417:SOTGOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Svoma, B. M., 2010: The influence of monsoonal gulf surges on precipitation and diurnal precipitation patterns in central Arizona. Wea. Forecasting, 25, 281289, https://doi.org/10.1175/2009WAF2222299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 95, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Alavez, A., T. Cavazos, and C. Turrent, 2014: Land–sea thermal contrast and intensity of the North American monsoon under climate change conditions. J. Climate, 27, 45664580, https://doi.org/10.1175/JCLI-D-13-00557.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tripathi, O. P., and F. Dominguez, 2013: Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J. Geophys. Res. Atmos., 118, 75917605, https://doi.org/10.1002/jgrd.50590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., and Coauthors, 2016: The resolution dependence of contiguous U.S. precipitation extremes in response to CO2 forcing. J. Climate, 29, 79918012, https://doi.org/10.1175/JCLI-D-16-0307.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Coauthors, 2014: On the seasonal forecasting of regional tropical cyclone activity. J. Climate, 27, 79948016, https://doi.org/10.1175/JCLI-D-14-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C., S. Lee, and D. Enfield, 2007: Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J. Climate, 20, 50215040, https://doi.org/10.1175/JCLI4304.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WMO, 2008: Guide to meteorological instruments and methods of observation. 7th ed., WMO 8, 716 pp., http://library.wmo.int/pmb_ged/wmo_8_en-2012.pdf.

  • Yang, L., J. Smith, M. L. Baeck, E. Morin, and D. C. Goodrich, 2017: Flash flooding in arid/semiarid regions: Dissecting the hydrometeorology and hydrology of the 19 August 2014 storm and flood hydroclimatology in Arizona. J. Hydrometeor., 18, 31033123, https://doi.org/10.1175/JHM-D-17-0089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2004: Dynamic mechanisms of the gulf surge. J. Geophys. Res., 109, D10107, https://doi.org/10.1029/2004JD004616.

  • Zhang, H., T. Delworth, F. Zeng, G. Vecchi, K. Paffendorf, and L. Jia, 2016: Detection, attribution, and projection of regional rainfall changes on (multi-) decadal time scales: A focus on southeastern South America. J. Climate, 29, 85158534, https://doi.org/10.1175/JCLI-D-16-0287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 766 233 19
PDF Downloads 670 221 19