Characterizing the Spatial Scales of Extreme Daily Precipitation in the United States

Danielle Touma Department of Earth System Science, Stanford University, Stanford, California

Search for other papers by Danielle Touma in
Current site
Google Scholar
PubMed
Close
,
Anna M. Michalak Department of Global Ecology, Carnegie Institution for Science, Stanford, California

Search for other papers by Anna M. Michalak in
Current site
Google Scholar
PubMed
Close
,
Daniel L. Swain Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, California, and The Nature Conservancy, Arlington, Virginia

Search for other papers by Daniel L. Swain in
Current site
Google Scholar
PubMed
Close
, and
Noah S. Diffenbaugh Department of Earth System Science, and Woods Institute for the Environment, Stanford University, Stanford, California

Search for other papers by Noah S. Diffenbaugh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatial extent of an extreme precipitation event can be important for a basin’s hydrologic response and subsequent flood risk, and may yield insights into underlying atmospheric processes. Using a relaxed moving-neighborhood approach, we develop indicator semivariograms based on precipitation records from the Global Historical Climatology Network–Daily (GHCN-D) station network to directly quantify the climatological length scales of extreme daily precipitation over the United States during 1965–2014. We find that the length scales of extreme (90th percentile) daily precipitation events vary both regionally and seasonally. Over the eastern half of the United States, daily extreme precipitation length scales reach 400 km during the winter months, but are approximately half as large during the summer months. The Northwest region, on the other hand, exhibits little seasonal variation, with extreme precipitation length scales of approximately 150 km throughout the year. By leveraging in situ station measurements, our study avoids some of the uncertainties associated with satellite or interpolated precipitation data, and provides the longest climatological assessment of length scales of extreme daily precipitation over the United States to date. Although the length scales that we calculate can be sensitive to station density, neighborhood size, and neighborhood relaxation, we find that the interregional and interseasonal differences in length scales are relatively robust. Our method could be extended to quantify changes in the spatial extent of extreme daily precipitation in the recent past, and to investigate the underlying causes of any changes that are detected.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0019.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Danielle Touma, detouma@stanford.edu

Abstract

The spatial extent of an extreme precipitation event can be important for a basin’s hydrologic response and subsequent flood risk, and may yield insights into underlying atmospheric processes. Using a relaxed moving-neighborhood approach, we develop indicator semivariograms based on precipitation records from the Global Historical Climatology Network–Daily (GHCN-D) station network to directly quantify the climatological length scales of extreme daily precipitation over the United States during 1965–2014. We find that the length scales of extreme (90th percentile) daily precipitation events vary both regionally and seasonally. Over the eastern half of the United States, daily extreme precipitation length scales reach 400 km during the winter months, but are approximately half as large during the summer months. The Northwest region, on the other hand, exhibits little seasonal variation, with extreme precipitation length scales of approximately 150 km throughout the year. By leveraging in situ station measurements, our study avoids some of the uncertainties associated with satellite or interpolated precipitation data, and provides the longest climatological assessment of length scales of extreme daily precipitation over the United States to date. Although the length scales that we calculate can be sensitive to station density, neighborhood size, and neighborhood relaxation, we find that the interregional and interseasonal differences in length scales are relatively robust. Our method could be extended to quantify changes in the spatial extent of extreme daily precipitation in the recent past, and to investigate the underlying causes of any changes that are detected.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0019.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Danielle Touma, detouma@stanford.edu

Supplementary Materials

    • Supplemental Materials (PDF 81.56 MB)
Save
  • Agel, L., M. Barlow, J.-H. Qian, F. Colby, E. Douglas, and T. Eichler, 2015: Climatology of daily precipitation and extreme precipitation events in the northeast United States. J. Hydrometeor., 16, 25372557, https://doi.org/10.1175/JHM-D-14-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aghakouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, 2011: Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J. Geophys. Res., 116, D02115, https://doi.org/10.1029/2010JD014741.

    • Search Google Scholar
    • Export Citation
  • Alkhaled, A. A., A. M. Michalak, S. R. Kawa, S. C. Olsen, and J. W. Wang, 2008: A global evaluation of the regional spatial variability of column integrated CO2 distributions. J. Geophys. Res., 113, D20303, https://doi.org/10.1029/2007JD009693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Behnke, R., S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, and V. C. Radeloff, 2016: Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl., 26, 13381351, https://doi.org/10.1002/15-1061.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berezowski, T., M. Szczesniak, I. Kardel, R. Michalowski, T. Okruszko, A. Mezghani, and M. Piniewski, 2016: CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth Syst. Sci. Data, 8, 127139, https://doi.org/10.5194/essd-8-127-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, C., E. Rabiei, and U. Haberlandt, 2014: Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios. J. Hydrol., 508, 88101, https://doi.org/10.1016/j.jhydrol.2013.10.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, W., M. L. Stein, J. Wang, V. R. Kotamarthi, and E. J. Moyer, 2016: Changes in spatiotemporal precipitation patterns in changing climate conditions. J. Climate, 29, 83558376, https://doi.org/10.1175/JCLI-D-15-0844.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiles, J.-P., and P. Delfiner, 2012: Geostatistics: Modeling Spatial Uncertainty. John Wiley & Sons, 726 pp.

    • Crossref
    • Export Citation
  • Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., 2009: Time-dependent changes in extreme-precipitation return-period amounts in the continental united states. J. Appl. Meteor. Climatol., 48, 20862099, https://doi.org/10.1175/2009JAMC2179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., J. S. Pal, R. J. Trapp, and F. Giorgi, 2005: Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA, 102, 15 77415 778, https://doi.org/10.1073/pnas.0506042102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., and Coauthors, 2017: Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA, 114, 48814886, https://doi.org/10.1073/pnas.1618082114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, J. G., and P. A. O’Gorman, 2017: Changing duration and spatial extent of midlatitude precipitation extremes across different climates. Geophys. Res. Lett., 44, 58635871, https://doi.org/10.1002/2017GL072855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endo, H., A. Kitoh, R. Mizuta, and M. Ishii, 2017: Future changes in precipitation extremes in East Asia and their uncertainty based on large ensemble simulations with a high-resolution AGCM. Sci. Online Lett. Atmos., 13, 712, https://doi.org/10.2151/sola.2017-002.

    • Search Google Scholar
    • Export Citation
  • Gleason, K. L., J. H. Lawrimore, D. H. Levinson, T. R. Karl, and D. J. Karoly, 2008: A revised U.S. Climate Extremes Index. J. Climate, 21, 21242137, https://doi.org/10.1175/2007JCLI1883.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gochis, D., and Coauthors, 2015: The great Colorado flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, https://doi.org/10.1175/BAMS-D-13-00241.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goovaerts, P., 1997: Geostatistics for Natural Resources Evaluation. Oxford University Press, 483 pp.

  • Goovaerts, P., M. T. D. Albuquerque, and I. M. H. R. Antunes, 2016: A multivariate geostatistical methodology to delineate areas of potential interest for future sedimentary gold exploration. Math. Geosci., 48, 921939, https://doi.org/10.1007/s11004-015-9632-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guinard, K., A. Mailhot, and D. Caya, 2015: Projected changes in characteristics of precipitation spatial structures over North America. Int. J. Climatol., 35, 596612, https://doi.org/10.1002/joc.4006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haas, T. C., 1990: Kriging and automated variogram modeling within a moving window. Atmos. Environ., 24A, 17591769, https://doi.org/10.1016/0960-1686(90)90508-K.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haberlandt, U., 2007: Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event. J. Hydrol., 332, 144157, https://doi.org/10.1016/j.jhydrol.2006.06.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammerling, D. M., A. M. Michalak, and S. R. Kawa, 2012: Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J. Geophys. Res., 117, D06306, https://doi.org/10.1029/2011JD017015.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., R. S. Smith, J. M. Gregory, and D. A. Stainforth, 2016: Irreducible uncertainty in near-term climate projections. Climate Dyn., 46, 38073819, https://doi.org/10.1007/s00382-015-2806-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Y. Yao, E. S. Yarosh, J. E. Janowiak, and K. C. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, https://doi.org/10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, D. E., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. C. B. Field et al., Eds., Cambridge University Press, 582 pp., https://www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf.

  • Karl, T. R., and W. J. Koss, 1984: Regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. National Climatic Data Center, 38 pp., https://repository.library.noaa.gov/view/noaa/10238.

    • Search Google Scholar
    • Export Citation
  • Kursinski, A. L., and S. L. Mullen, 2008: Spatiotemporal variability of hourly precipitation over the eastern contiguous United States from Stage IV multisensor analyses. J. Hydrometeor., 9, 321, https://doi.org/10.1175/2007JHM856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405, https://doi.org/10.1002/qj.49712353807.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, J., Z. Zhu, and W. Dong, 2017: Assessing the uncertainty of CESM-LE in simulating the trends of mean and extreme temperature and precipitation over China. Int. J. Climatol., 37, 21012110, https://doi.org/10.1002/joc.4837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, X. C., T. C. Gao, and L. Liu, 2013: A comparison of rainfall measurements from multiple instruments. Atmos. Meas. Tech., 6, 15851595, https://doi.org/10.5194/amt-6-1585-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, C. D., 2005: Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol., 308, 128150, https://doi.org/10.1016/j.jhydrol.2004.10.026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, C. D., 2010: Nonstationary models for exploring and mapping monthly precipitation in the United Kingdom. Int. J. Climatol., 30, 390405, https://doi.org/10.1002/joc.1892.

    • Search Google Scholar
    • Export Citation
  • McDonald, J. H., 2009: Handbook of Biological Statistics. 2nd ed. Sparky House Publishing, 313 pp.

  • Mehran, A., and A. Aghakouchak, 2014: Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrol. Processes, 28, 22622270, https://doi.org/10.1002/hyp.9779.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, https://doi.org/10.1175/JTECH-D-11-00103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, P. W., and T. L. Mote, 2017: A climatology of weakly forced and pulse thunderstorms in the southeast United States. J. Appl. Meteor. Climatol., 56, 30173033, https://doi.org/10.1175/JAMC-D-17-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, S.-K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2013: Corrigendum: Human contribution to more-intense precipitation extremes. Nature, 498, 526, https://doi.org/10.1038/nature12197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, J. C., and B. A. Colle, 2011: The spatial and temporal variability of convective storms over the northeast United States during the warm season. Mon. Wea. Rev., 139, 9921012, https://doi.org/10.1175/2010MWR3316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, https://doi.org/10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NOAA/NCEI, 2017: U.S. billion-dollar weather and climate disasters. National Centers for Environmental Information, accessed 25 April 2018, https://www.ncdc.noaa.gov/billions/.

  • O’Gorman, P. A., 2015: Precipitation extremes under climate change. Curr. Climate Change Rep., 1, 4959, https://doi.org/10.1007/s40641-015-0009-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oyler, J. W., A. Ballantyne, K. Jencso, M. Sweet, and S. W. Running, 2015: Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. Int. J. Climatol., 35, 22582279, https://doi.org/10.1002/joc.4127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., J. A. Howe, and K. E. Kunkel, 2009: How spatially coherent and statistically robust are temporal changes in extreme precipitation in the contiguous USA? Int. J. Climatol., 29, 3145, https://doi.org/10.1002/joc.1696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, https://doi.org/10.1175/BAMS-D-11-00052.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • R Core Team, 2015: R: A language and environment for statistical computing. https://www.r-project.org/.

  • Ribeiro, P. J., Jr., and P. J. Diggle, 2016: geoR: Analysis of geostatistical data. http://cran.r-project.org/package=geoR.

  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2015: The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis. Mon. Wea. Rev., 143, 19241944, https://doi.org/10.1175/MWR-D-14-00288.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, D. P., C. Deser, J. Fasullo, and K. E. Trenberth, 2013: Climate data guide spurs discovery and understanding. Eos, Trans. Amer. Geophys. Union, 94, 121122, https://doi.org/10.1002/2013EO130001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, S. H., T. L. Root, and M. D. Mastrandrea, Eds., 2011: Encyclopedia of Climate and Weather. 2nd ed. Oxford University Press, 1488 pp., http://www.oxfordreference.com/view/10.1093/acref/9780199765324.001.0001/acref-9780199765324.

    • Crossref
    • Export Citation
  • Sieck, L. C., S. J. Burges, and M. Steiner, 2007: Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res., 43, W01420, https://doi.org/10.1029/2005WR004519.

    • Search Google Scholar
    • Export Citation
  • Singh, D., M. Tsiang, B. Rajaratnam, and N. S. Diffenbaugh, 2013: Precipitation extremes over the continental United States in a transient, high-resolution, ensemble climate model experiment. J. Geophys. Res. Atmos., 118, 70637086, https://doi.org/10.1002/jgrd.50543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, X., and A. P. Barros, 2010: An evaluation of the statistics of rainfall extremes in rain gauge observations, and satellite-based and reanalysis products using universal multifractals. J. Hydrometeor., 11, 388404, https://doi.org/10.1175/2009JHM1142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tadić, J. M., X. Qiu, V. Yadav, and A. M. Michalak, 2015: Mapping of satellite Earth observations using moving window block kriging. Geosci. Model Dev., 8, 33113319, https://doi.org/10.5194/gmd-8-3311-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, https://doi.org/10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thornton, P. E., S. W. Running, and M. A. White, 1997: Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol., 190, 214251, https://doi.org/10.1016/S0022-1694(96)03128-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tokay, A., P. G. Bashor, and V. L. McDowell, 2010: Comparison of rain gauge measurements in the mid-Atlantic region. J. Hydrometeor., 11, 553565, https://doi.org/10.1175/2009JHM1137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E. D. Robinson, and J. S. Pal, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Changes in precipitation with climate change. Climate Res., 47, 123138, https://doi.org/10.3354/cr00953.

  • Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., and Coauthors, 2017: Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change. Hydrol. Earth Syst. Sci., 21, 897921, https://doi.org/10.5194/hess-21-897-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wasko, C., A. Sharma, and S. Westra, 2016: Reduced spatial extent of extreme storms at higher temperatures. Geophys. Res. Lett., 43, 40264032, https://doi.org/10.1002/2016GL068509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Western, A. W., G. Blöschl, and R. B. Grayson, 1998: How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrol. Processes, 12, 18511868, https://doi.org/10.1002/(SICI)1099-1085(19981015)12:12<1851::AID-HYP670>3.0.CO;2-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wright, S. P., 1992: Adjusted P-values for simultaneous inference. Biometrics, 48, 10051013, https://doi.org/10.2307/2532694.

  • Zhou, Y., and C. J. Matyas, 2017: Spatial characteristics of storm-total rainfall swaths associated with tropical cyclones over the eastern United States. Int. J. Climatol., 37, 557569, https://doi.org/10.1002/joc.5021.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1947 612 57
PDF Downloads 1588 398 40