Roles of SST versus Internal Atmospheric Variability in Winter Extreme Precipitation Variability along the U.S. West Coast

Lu Dong Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Lu Dong in
Current site
Google Scholar
PubMed
Close
,
L. Ruby Leung Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Fengfei Song Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Fengfei Song in
Current site
Google Scholar
PubMed
Close
, and
Jian Lu Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jian Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The U.S. West Coast exhibits large variability of extreme precipitation during the boreal winter season (December–February). Understanding the large-scale forcing of such variability is important for improving prediction. This motivates analyses of the roles of sea surface temperature (SST) forcing and internal atmospheric variability on extreme precipitation on the U.S. West Coast. Observations, reanalysis products, and an ensemble of Atmospheric Model Intercomparison Project (AMIP) experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed. It is found that SST forcing only accounts for about 20% of the variance of both extreme and nonextreme precipitation in winter. Under SST forcing, extreme precipitation is associated with the Pacific–North American teleconnection, while nonextreme precipitation is associated with the North Pacific Oscillation. The remaining 80% of extreme precipitation variations can be explained by internal atmospheric dynamics featuring a circumglobal wave train with a cyclonic circulation located over the U.S. West Coast. The circumglobal teleconnection manifests from the mid- to high-latitude intrinsic variability, but it can also emanate from anomalous convection over the tropical western Pacific, with stronger tropical convection over the Maritime Continent setting the stage for more extreme precipitation in winter. Whether forced by SST or internal atmospheric dynamics, atmospheric rivers are a common and indispensable feature of the large-scale environment that produces concomitant extreme precipitation along the U.S. West Coast.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lu Dong, lu.dong@pnnl.gov

Abstract

The U.S. West Coast exhibits large variability of extreme precipitation during the boreal winter season (December–February). Understanding the large-scale forcing of such variability is important for improving prediction. This motivates analyses of the roles of sea surface temperature (SST) forcing and internal atmospheric variability on extreme precipitation on the U.S. West Coast. Observations, reanalysis products, and an ensemble of Atmospheric Model Intercomparison Project (AMIP) experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are analyzed. It is found that SST forcing only accounts for about 20% of the variance of both extreme and nonextreme precipitation in winter. Under SST forcing, extreme precipitation is associated with the Pacific–North American teleconnection, while nonextreme precipitation is associated with the North Pacific Oscillation. The remaining 80% of extreme precipitation variations can be explained by internal atmospheric dynamics featuring a circumglobal wave train with a cyclonic circulation located over the U.S. West Coast. The circumglobal teleconnection manifests from the mid- to high-latitude intrinsic variability, but it can also emanate from anomalous convection over the tropical western Pacific, with stronger tropical convection over the Maritime Continent setting the stage for more extreme precipitation in winter. Whether forced by SST or internal atmospheric dynamics, atmospheric rivers are a common and indispensable feature of the large-scale environment that produces concomitant extreme precipitation along the U.S. West Coast.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Lu Dong, lu.dong@pnnl.gov
Save
  • Biasutti, M., R. Seager, and D. B. Kirschbaum, 2016: Landslides in West Coast metropolitan areas: The role of extreme weather events. Wea. Climate Extremes, 14, 6779, https://doi.org/10.1016/j.wace.2016.11.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., and G. A. Vecchi, 2003: The influence of the Madden–Julian oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600613, https://doi.org/10.1175/1520-0434(2003)018<0600:TIOTMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua, 2015: Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett., 42, 34143420, https://doi.org/10.1002/2015GL063306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910, https://doi.org/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Y. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., and L. Riddle, 1992: Atmospheric circulation and precipitation in the Sierra Nevada. Proc. Int. Symp. on Managing Water Resources during Global Change, Reno, NV, American Water Resources Association, 711–719, https://sfbay.wr.usgs.gov/publications/pdf/cayan_1992_sierra.pdf.

  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, https://doi.org/10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. L., and T. J. Zhou, 2017: Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Climate Dyn., https://doi.org/10.1007/s00382-017-3871-y.

    • Search Google Scholar
    • Export Citation
  • Chen, Z., B. Gan, L. Wu, and F. Jia, 2018: Pacific-North American teleconnection and North Pacific Oscillation: Historical simulation and future projection in CMIP5 models. Climate Dyn., 50, 43794403, https://doi.org/10.1007/s00382-017-3881-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, A., J. C. Fyfe, S. P. Xie, and X. Dai, 2015: Decadal modulation of global surface temperature by internal climate variability. Nat. Climate Change, 5, 555559, https://doi.org/10.1038/nclimate2605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, https://doi.org/10.1111/j.1752-1688.2011.00546.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North–south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11, 30953111, https://doi.org/10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ding, Q., and B. Wang, 2005: Circumglobal teleconnections in the Northern Hemisphere summer. J. Climate, 18, 34833505, https://doi.org/10.1175/JCLI3473.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, L. R. Leung, Q. Yang, S. Hagos, and Y. Qian, 2015: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett., 42, 71797186, https://doi.org/10.1002/2015GL065435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, Y., J. Lu, and L. R. Leung, 2016: Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Climate, 29, 67116726, https://doi.org/10.1175/JCLI-D-16-0088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guan, B., D. E. Waliser, N. P. Molotch, E. J. Fetzer, and P. J. Neiman, 2012: Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon. Wea. Rev., 140, 325342, https://doi.org/10.1175/MWR-D-11-00087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the large ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change. Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345.

  • Harnik, N., G. Messori, R. Caballero, and S. Feldstein, 2016: The circumglobal North American wave pattern and its relation to cold events in eastern North America. Geophys. Res. Lett., 43, 11 01511 023, https://doi.org/10.1002/2016GL070760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 18941902, https://doi.org/10.1002/2015GL063083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • He, J., C. Deser, and B. J. Soden, 2017: Atmospheric and oceanic origins of tropical precipitation variability. J. Climate, 30, 31973217, https://doi.org/10.1175/JCLI-D-16-0714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and K. C. Mo, 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244, https://doi.org/10.1175/1520-0442(1997)010<0223:PNPCAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, B., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911930, https://doi.org/10.1175/JCLI-D-14-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J. Climate, 13, 35763587, https://doi.org/10.1175/1520-0442(2000)013<3576:OOEPEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jong, B.-T., M. Ting, and R. Seager, 2016: El Niño impact on California precipitation: Seasonality, regionality, and El Niño intensity. Environ. Res. Lett., 11, 054021, https://doi.org/10.1088/1748-9326/11/5/054021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. R., and Coauthors, 2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 14691472, https://doi.org/10.1126/science.aaa5632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 20092030, https://doi.org/10.1256/qj.05.204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, and S. D. Schubert, 2014: A mechanism for land–atmosphere feedback involving planetary wave structures. J. Climate, 27, 92909301, https://doi.org/10.1175/JCLI-D-14-00315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., Y. Chang, H. Wang, and S. D. Schubert, 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 73457364, https://doi.org/10.1175/JCLI-D-16-0192.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. Chen, 2017: What is the variability in US west coast winter precipitation during strong El Niño events? Climate Dyn., 49, 27892802, https://doi.org/10.1007/s00382-016-3485-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamjiri, M. A., M. D. Dettinger, F. M. Ralph, and B. Guan, 2017: Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation. Geophys. Res. Lett., 44, 70207028, https://doi.org/10.1002/2017GL074193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., G. Villarini, R. P. Allan, E. F. Wood, and A. J. Wade, 2012: The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res., 117, D20106, https://doi.org/10.1029/2012JD018027.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and Y. Qian, 2009: Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys. Res. Lett., 36, L03820, https://doi.org/10.1029/2008GL036445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mo, K. C., and R. W. Higgins, 1998: Tropical convection and precipitation regimes in the western United States. J. Climate, 11, 24042423, https://doi.org/10.1175/1520-0442(1998)011<2404:TCAPRI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger, 2008: Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals. Mon. Wea. Rev., 136, 43984420, https://doi.org/10.1175/2008MWR2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick, 2011: Flooding in western Washington: The connection to atmospheric rivers. J. Hydrometeor., 12, 13371358, https://doi.org/10.1175/2011JHM1358.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Payne, A. E., and G. Magnusdottir, 2015: An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos., 120, 11 17311 190, https://doi.org/10.1002/2015JD023586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piechota, T. C., and J. A. Dracup, 1996: Drought and regional hydrologic variation in the United States: Associations with the El Niño-Southern Oscillation. Water Resour. Res., 32, 13591373, https://doi.org/10.1029/96WR00353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., and M. D. Dettinger, 2012: Historical and national perspectives on extreme West Coast precipitation associated with atmospheric rivers during December 2010. Bull. Amer. Meteor. Soc., 93, 783790, https://doi.org/10.1175/BAMS-D-11-00188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, https://doi.org/10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. A. Wick, S. I. Gutman, M. D. Dettinger, D. R. Cayan, and A. B. White, 2006: Flooding on California’s Russian River: Role of atmospheric rivers. Geophys. Res. Lett., 33, L13801, https://doi.org/10.1029/2006GL026689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, G. N. Kiladis, K. Weickmann, and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189, https://doi.org/10.1175/2010MWR3596.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Redmond, K. T., and R. W. Koch, 1991: Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resour. Res., 27, 23812399, https://doi.org/10.1029/91WR00690.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seager, R., M. Hoerling, S. Schubert, H. Wang, B. Lyon, A. Kumar, J. Nakamura, and N. Henderson, 2015: Causes of the 2011–14 California drought. J. Climate, 28, 69977024, https://doi.org/10.1175/JCLI-D-14-00860.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., and J. T. Kiehl, 2016: Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett., 43, 87758782, https://doi.org/10.1002/2016GL070470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., J. T. Kiehl, and G. A. Meehl, 2016: Future changes in regional precipitation simulated by a half-degree coupled climate model: Sensitivity to horizontal resolution. J. Adv. Model. Earth Syst., 8, 863884, https://doi.org/10.1002/2015MS000584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, F. F., and T. J. Zhou, 2015: The crucial role of internal variability in modulating the decadal variation of the East Asian summer monsoon–ENSO relationship during the twentieth century. J. Climate, 28, 70937107, https://doi.org/10.1175/JCLI-D-14-00783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steinman, B. A., M. E. Mann, and S. K. Miller, 2015: Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347, 988991, https://doi.org/10.1126/science.1257856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H. Y., and G. Branstator, 2017: Causes of extreme ridges that induce California droughts. J. Climate, 30, 14771492, https://doi.org/10.1175/JCLI-D-16-0524.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teng, H. Y., G. Branstator, H. L. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat. Geosci., 6, 10561061, https://doi.org/10.1038/ngeo1988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., and C. F. Mass, 2017: Changes in the climatology, structure, and seasonality of northeast Pacific atmospheric rivers in CMIP5 climate simulations. J. Hydrometeor., 18, 21312141, https://doi.org/10.1175/JHM-D-16-0200.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2012: Wintertime extreme precipitation events along the Pacific Northwest coast: Climatology and synoptic evolution. Mon. Wea. Rev., 140, 20212043, https://doi.org/10.1175/MWR-D-11-00197.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, M. D., C. F. Mass, and E. P. Salathé, 2015: Changes in winter atmospheric rivers along the North American West Coast in CMIP5 climate models. J. Hydrometeor., 16, 118128, https://doi.org/10.1175/JHM-D-14-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and L. R. Leung, 2015: Assessing the relative influence of soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys. Res. Lett., 42, 50055013, https://doi.org/10.1002/2015GL064139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, S., M. L’Heureux, S. Weaver, and A. Kumar, 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471, https://doi.org/10.1007/s00382-011-1001-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725735, https://doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 911 171 12
PDF Downloads 771 138 9