Diminishing Arctic Sea Ice Promotes Stronger Surface Winds

John Mioduszewski Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by John Mioduszewski in
Current site
Google Scholar
PubMed
Close
,
Stephen Vavrus Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Stephen Vavrus in
Current site
Google Scholar
PubMed
Close
, and
Muyin Wang Joint Institute for the Study of the Atmosphere and Oceans, University of Washington, and
Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington

Search for other papers by Muyin Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Projections of Arctic sea ice through the end of the twenty-first century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic basin because of changes in atmospheric stability, surface roughness, and/or baroclinicity. Here we identify patterns of wind changes in all seasons across the Arctic and their likely causal mechanisms, particularly those associated with sea ice loss. Output from the Community Earth System Model Large Ensemble Project (CESM-LE) was analyzed for the recent past (primarily 1971–2000) and future (2071–2100). Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 95th percentile change even more, increasing in frequency by up to 100%. The strengthened winds are closely linked to decreasing surface roughness and lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (exceeding 20°C warmer in the central Arctic in autumn and winter), as well as local changes in the storm track. The implications of stronger future winds include increased coastal and navigational hazards. Our findings suggest that increasing winds, along with reduction of sea ice, rising sea level, and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0109.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Mioduszewski, jmioduszewsk@wisc.edu

Abstract

Projections of Arctic sea ice through the end of the twenty-first century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic basin because of changes in atmospheric stability, surface roughness, and/or baroclinicity. Here we identify patterns of wind changes in all seasons across the Arctic and their likely causal mechanisms, particularly those associated with sea ice loss. Output from the Community Earth System Model Large Ensemble Project (CESM-LE) was analyzed for the recent past (primarily 1971–2000) and future (2071–2100). Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 95th percentile change even more, increasing in frequency by up to 100%. The strengthened winds are closely linked to decreasing surface roughness and lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (exceeding 20°C warmer in the central Arctic in autumn and winter), as well as local changes in the storm track. The implications of stronger future winds include increased coastal and navigational hazards. Our findings suggest that increasing winds, along with reduction of sea ice, rising sea level, and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0109.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John Mioduszewski, jmioduszewsk@wisc.edu

Supplementary Materials

    • Supplemental Materials (PDF 4.51 MB)
Save
  • Aksenov, Y., E. E. Popova, A. Yool, A. J. G. Nurser, T. D. Williams, L. Bertino, and J. Bergh, 2017: On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Mar. Policy, 75, 300317, https://doi.org/10.1016/j.marpol.2015.12.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., M. A. Lange, S. F. Ackley, and P. Wadhams, 1993: Roughness of Weddell Sea ice and estimates of the air-ice drag coefficient. J. Geophys. Res., 98, 12 43912 452, https://doi.org/10.1029/93JC00654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnhart, K. R., R. S. Anderson, I. Overeem, C. Wobus, G. D. Clow, and F. E. Urban, 2014: Modeling erosion of ice-rich permafrost bluffs along the Alaskan Beaufort Sea coast. J. Geophys. Res. Earth Surf., 119, 11551179, https://doi.org/10.1002/2013JF002845.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 35183543, https://doi.org/10.1175/JCLI3815.1.

  • Boer, G. J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: Projected climate to the twenty-first century. Climate Dyn., 16, 427450, https://doi.org/10.1007/s003820050338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cassano, E. N., J. J. Cassano, M. E. Higgins, and M. C. Serreze, 2014: Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model. Int. J. Climatol., 34, 766779, https://doi.org/10.1002/joc.3723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavalieri, D. J., and C. L. Parkinson, 2012: Arctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 881889, https://doi.org/10.5194/tc-6-881-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., W. N. Meier, and R. Gersten, 2017: Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res. Oceans, 122, 68836900, https://doi.org/10.1002/2017JC012768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crawford, A., and M. Serreze, 2017: Projected changes in the Arctic frontal zone and summer Arctic cyclone activity in the CESM Large Ensemble. J. Climate, 30, 98479869, https://doi.org/10.1175/JCLI-D-17-0296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., and K. I. Hodges, 2018: Growing land‐sea temperature contrast and the intensification of Arctic cyclones. Geophys. Res. Lett., 45, 36733681, https://doi.org/10.1029/2018GL077587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, J. J., M. M. Holland, and K. I. Hodges, 2018: Seasonal differences in the response of Arctic cyclones to climate change in CESM1. Climate Dyn., 50, 38853903, https://doi.org/10.1007/s00382-017-3767-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desai, A. R., J. A. Austin, V. Bennington, and G. A. McKinley, 2009: Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nat. Geosci., 2, 855858, https://doi.org/10.1038/ngeo693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Tomas, M. Alexander, and D. Lawrence, 2010: The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J. Climate, 23, 333351, https://doi.org/10.1175/2009JCLI3053.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dobrynin, M., J. Murawsky, and S. Yang, 2012: Evolution of the global wind wave climate in CMIP5 experiments. Geophys. Res. Lett., 39, L18606, https://doi.org/10.1029/2012GL052843.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., W. Chan, D. J. Leathers, J. R. Miller, and D. E. Veron, 2009: Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett., 36, L07503, https://doi.org/10.1029/2009GL037274.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, O. P., G. G. Panteleev, and D. E. Atkinson, 2011: Ocean wave conditions in the Chukchi Sea from satellite and in situ observations. Geophys. Res. Lett., 38, L24610, https://doi.org/10.1029/2011GL049839.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gan, B., L. Wu, F. Jia, S. Li, W. Cai, H. Nakamura, M. A. Alexander, and A. J. Miller, 2017: On the response of the Aleutian low to greenhouse warming. J. Climate, 30, 39073925, https://doi.org/10.1175/JCLI-D-15-0789.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gervais, M., E. Atallah, J. R. Gyakum, and L. B. Tremblay, 2016: Arctic air masses in a warming world. J. Climate, 29, 23592373, https://doi.org/10.1175/JCLI-D-15-0499.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guest, P. S., and K. L. Davidson, 1991: The aerodynamic roughness of different types of sea ice. J. Geophys. Res., 96, 47094721, https://doi.org/10.1029/90JC02261.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hughes, M., and J. J. Cassano, 2015: The climatological distribution of extreme Arctic winds and implications for ocean and sea ice processes. J. Geophys. Res. Atmos., 120, 73587377, https://doi.org/10.1002/2015JD023189.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, https://doi.org/10.1175/BAMS-D-12-00121.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett., 43, 91139120, https://doi.org/10.1002/2016GL070067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaiser, R., K. Dethloff, D. Handorf, A. Rinke, and J. Cohen, 2012: Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus, 64A, 11595, https://doi.org/10.3402/tellusa.v64i0.11595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Khon, V. C., I. I. Mokhov, F. A. Pogarskiy, A. Babanin, K. Dethloff, A. Rinke, and H. Matthes, 2014: Wave heights in the 21st century Arctic Ocean simulated with a regional climate model. Geophys. Res. Lett., 41, 29562961, https://doi.org/10.1002/2014GL059847.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knippertz, P., U. Ulbrich, and P. Speth, 2000: Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Climate Res., 15, 109122, https://doi.org/10.3354/cr015109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knutti, R., D. Masson, and A. Gettelman, 2013: Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett., 40, 11941199, https://doi.org/10.1002/grl.50256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koyama, T., J. Stroeve, J. Cassano, and A. Crawford, 2017: Sea ice loss and Arctic cyclone activity from 1979 to 2014. J. Climate, 30, 47354754, https://doi.org/10.1175/JCLI-D-16-0542.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and D. A. Rothrock, 2009: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi, 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Labe, Z., G. Magnusdottir, and H. Stern, 2018: Variability of Arctic sea ice thickness using PIOMAS and the CESM Large Ensemble. J. Climate, 31, 32333247, https://doi.org/10.1175/JCLI-D-17-0436.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1982: Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr., 12, 464482, https://doi.org/10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lindsay, R., and A. Schweiger, 2015: Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere, 9, 269283, https://doi.org/10.5194/tc-9-269-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery, 2007: A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys. Res. Lett., 34, L24501, https://doi.org/10.1029/2007GL032043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maslanik, J. A., J. Stroeve, C. Fowler, and W. Emery, 2011: Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, https://doi.org/10.1029/2011GL047735.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P.-Y. Barriat, 2012: Constraining projections of summer Arctic sea ice. Cryosphere, 6, 13831394, https://doi.org/10.5194/tc-6-1383-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, K. E., P. J. Kushner, J. C. Fyfe, M. Sigmond, V. V. Kharin, and C. M. Bitz, 2017: Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophys. Res. Lett., 44, 79557964, https://doi.org/10.1002/2017GL074327.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McDonald, R. E., 2011: Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones. Climate Dyn., 37, 13991425, https://doi.org/10.1007/s00382-010-0916-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McInnes, K. L., T. A. Erwin, and J. M. Bathols, 2011: Global Climate Model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos. Sci. Lett., 12, 325333, https://doi.org/10.1002/asl.341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Melia, N., K. Haines, and E. Hawkins, 2016: Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett., 43, 97209728, https://doi.org/10.1002/2016GL069315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, R. J., and I. Simmonds, 1995: Responses of climate and cyclones to reductions in Arctic winter sea ice. J. Geophys. Res., 100, 47914806, https://doi.org/10.1029/94JC02206.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note, NCAR/TN-486+STR, 274 pp., www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.

  • Nghiem, S. V., I. G. Rigor, D. K. Perovich, P. Clemente-Colón, J. W. Weatherly, and G. Neumann, 2007: Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 34, L19504, https://doi.org/10.1029/2007GL031138.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Notz, D., and J. Marotzke, 2012: Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett., 39, L08502, https://doi.org/10.1029/2012GL051094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Obukhov, A. M., 1971: Turbulence in an atmosphere with a non-uniform temperature. Bound.-Layer Meteor., 2, 729, https://doi.org/10.1007/BF00718085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Onarheim, I. H., T. Eldevik, L. H. Smedsrud, and J. C. Stroeve, 2018: Seasonal and regional manifestation of Arctic sea ice loss. J. Climate, 31, 49174932, https://doi.org/10.1175/JCLI-D-17-0427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overeem, I., R. S. Anderson, C. W. Wobus, G. D. Clow, F. E. Urban, and N. Matell, 2011: Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett., 38, L17503, https://doi.org/10.1029/2011GL048681.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., 1985: Atmospheric boundary layer structure and drag coefficients over sea ice. J. Geophys. Res., 90, 90299049, https://doi.org/10.1029/JC090iC05p09029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and M. Wang, 2010: Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus, 62A, 19, https://doi.org/10.1111/j.1600-0870.2009.00421.x.

    • Search Google Scholar
    • Export Citation
  • Peings, Y., J. Cattiaux, S. Vavrus, and G. Magnusdottir, 2017: Late twenty-first-century changes in the midlatitude atmospheric circulation in the CESM large ensemble. J. Climate, 30, 59435960, https://doi.org/10.1175/JCLI-D-16-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rinke, A., W. Maslowski, K. Dethloff, and J. Clement, 2006: Influence of sea ice on the atmosphere: A study with an Arctic atmospheric regional climate model. J. Geophys. Res., 111, D16103, https://doi.org/10.1029/2005JD006957.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenblum, E., and I. Eisenman, 2017: Sea ice trends in climate models only accurate in runs with biased global warming. J. Climate, 30, 62656278, https://doi.org/10.1175/JCLI-D-16-0455.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Royer, J. F., S. Planton, and M. Déqué, 1990: A sensitivity experiment for the removal of Arctic sea ice with the French spectral general circulation model. Climate Dyn., 5, 117, https://doi.org/10.1007/BF00195850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salathé, E. P., Jr., 2006: Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett., 33, L19820, https://doi.org/10.1029/2006GL026882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 13341337, https://doi.org/10.1038/nature09051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., I. Simmonds, C. Deser, and R. Tomas, 2013a: The atmospheric response to three decades of observed arctic sea ice loss. J. Climate, 26, 12301248, https://doi.org/10.1175/JCLI-D-12-00063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., C. Deser, I. Simmonds, and R. Tomas, 2014: Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Climate Dyn., 43, 333344, https://doi.org/10.1007/s00382-013-1830-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semmler, T., L. Stulic, T. Jung, N. Tilinina, C. Campos, S. Gulev, and D. Koracin, 2016: Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model simulations. J. Climate, 29, 58935913, https://doi.org/10.1175/JCLI-D-15-0586.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seo, H., and J. Yang, 2013: Dynamical response of the Arctic atmospheric boundary layer process to uncertainties in sea-ice concentration. J. Geophys. Res. Atmos., 118, 12 38312 402, https://doi.org/10.1002/2013JD020312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sepp, M., and J. Jaagus, 2011: Changes in the activity and tracks of Arctic cyclones. Climatic Change, 105, 577595, https://doi.org/10.1007/s10584-010-9893-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and J. Stroeve, 2015: Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos. Trans. Roy. Soc. London, 373A, 20140159, https://doi.org/10.1098/rsta.2014.0159.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 315, 15331536, https://doi.org/10.1126/science.1139426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. P. Barrett, J. Stroeve, D. N. Kindig, and M. M. Holland, 2009: The emergence of surface-based Arctic amplification. Cryosphere, 3, 1119, https://doi.org/10.5194/tc-3-11-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sinclair, M. R., and I. G. Watterson, 1999: Objective assessment of extratropical weather systems in simulated climates. J. Climate, 12, 34673485, https://doi.org/10.1175/1520-0442(1999)012<3467:OAOEWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93, 15 46715 472, https://doi.org/10.1029/JC093iC12p15467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, https://doi.org/10.1111/j.1600-0870.2008.00314.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spreen, G., R. Kwok, and D. Menemenlis, 2011: Trends in Arctic sea ice drift and role of wind forcing: 1992–2009. Geophys. Res. Lett., 38, L19501, https://doi.org/10.1029/2011GL048970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stegall, S. T., and J. Zhang, 2012: Wind field climatology, changes, and extremes in the Chukchi–Beaufort Seas and Alaska North Slope during 1979–2009. J. Climate, 25, 80758089, https://doi.org/10.1175/JCLI-D-11-00532.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stopa, J. E., F. Ardhuin, and F. Girard-Ardhuin, 2016: Wave climate in the Arctic 1992–2014: Seasonality and trends. Cryosphere, 10, 16051629, https://doi.org/10.5194/tc-10-1605-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice evolution from combining observations and models. Global Planet. Change, 135, 119132, https://doi.org/10.1016/j.gloplacha.2015.10.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier, 2012a: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett., 39, L16502, https://doi.org/10.1029/2012GL052676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. C. Serreze, M. M. Holland, J. E. Kay, J. Malanik, and A. P. Barrett, 2012b: The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change, 110, 10051027, https://doi.org/10.1007/s10584-011-0101-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swart, N. C., J. C. Fyfe, E. Hawkins, J. E. Kay, and A. Jahn, 2015: Influence of internal variability on Arctic sea-ice trends. Nat. Climate Change, 5, 8689, https://doi.org/10.1038/nclimate2483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trigo, I. F., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dyn., 26, 127143, https://doi.org/10.1007/s00382-005-0065-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., F. Wang, J. E. Martin, J. A. Francis, Y. Peings, and J. Cattiaux, 2017: Changes in North American atmospheric circulation and extreme weather: Influence of Arctic amplification and Northern Hemisphere snow cover. J. Climate, 30, 43174333, https://doi.org/10.1175/JCLI-D-16-0762.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadhams, P., 2000: Ice in the Ocean. Gordon and Breach Science Publishers, 351 pp.

  • Wang, M., and J. E. Overland, 2012: A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett., 39, L18501, https://doi.org/10.1029/2012GL052868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, V. R. Swail, and A. Cox, 2015: Historical changes in the Beaufort–Chukchi–Bering Seas surface winds and waves, 1971–2013. J. Climate, 28, 74577469, https://doi.org/10.1175/JCLI-D-15-0190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warshaw, M., and R. R. Rapp, 1973: An experiment on the sensitivity of a global circulation model. J. Appl. Meteor., 12, 4349, https://doi.org/10.1175/1520-0450(1973)012<0043:AEOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Waseda, T., A. Webb, K. Sato, J. Inoue, A. Kohout, B. Penrose, and S. Penrose, 2018: Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Sci. Rep., 8, 4489, https://doi.org/10.1038/s41598-018-22500-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watterson, I. G., 2006: The intensity of precipitation during extratropical cyclones in global warming simulations: A link to cyclone intensity? Tellus, 58A, 8297, https://doi.org/10.1111/j.1600-0870.2006.00147.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Young, I. R., J. Vinoth, S. Zieger, and A. V. Babanin, 2012: Investigation of trends in extreme value wave height and wind speed. J. Geophys. Res., 117, C00J06, https://doi.org/10.1029/2011JC007753.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., S. T. Stegall, and X. Zhang, 2018: Wind–sea surface temperature–sea ice relationship in the Chukchi–Beaufort Seas during autumn. Environ. Res. Lett., 13, 034008, https://doi.org/10.1088/1748-9326/aa9adb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zolina, O., and S. K. Gulev, 2002: Improving the accuracy of mapping cyclone numbers and frequencies. Mon. Wea. Rev., 130, 748759, https://doi.org/10.1175/1520-0493(2002)130<0748:ITAOMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1296 270 40
PDF Downloads 1160 250 56