Drivers of the Low-Cloud Response to Poleward Jet Shifts in the North Pacific in Observations and Models

Mark D. Zelinka Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Mark D. Zelinka in
Current site
Google Scholar
PubMed
Close
,
Kevin M. Grise University of Virginia, Charlottesville, Virginia

Search for other papers by Kevin M. Grise in
Current site
Google Scholar
PubMed
Close
,
Stephen A. Klein Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Stephen A. Klein in
Current site
Google Scholar
PubMed
Close
,
Chen Zhou Lawrence Livermore National Laboratory, Livermore, California

Search for other papers by Chen Zhou in
Current site
Google Scholar
PubMed
Close
,
Anthony M. DeAngelis University of California, Los Angeles, Los Angeles, California

Search for other papers by Anthony M. DeAngelis in
Current site
Google Scholar
PubMed
Close
, and
Matthew W. Christensen University of Oxford, Oxford, United Kingdom

Search for other papers by Matthew W. Christensen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The long-standing expectation that poleward shifts of the midlatitude jet under global warming will lead to poleward shifts of clouds and a positive radiative feedback on the climate system has been shown to be misguided by several recent studies. On interannual time scales, free-tropospheric clouds are observed to shift along with the jet, but low clouds increase across a broad expanse of the North Pacific Ocean basin, resulting in negligible changes in total cloud fraction and top-of-atmosphere radiation. Here it is shown that this low-cloud response is consistent across eight independent satellite-derived cloud products. Using multiple linear regression, it is demonstrated that the spatial pattern and magnitude of the low-cloud-coverage response is primarily driven by anomalous surface temperature advection. In the eastern North Pacific, anomalous cold advection by anomalous northerly surface winds enhances sensible and latent heat fluxes from the ocean into the boundary layer, resulting in large increases in low-cloud coverage. Local increases in low-level stability make a smaller contribution to this low-cloud increase. Despite closely capturing the observed response of large-scale meteorology to jet shifts, global climate models largely fail to capture the observed response of clouds and radiation to interannual jet shifts because they systematically underestimate how sensitive low clouds are to surface temperature advection, and to a lesser extent, low-level stability. More realistic model simulations of cloud–radiation–jet interactions require that parameterizations more accurately capture the sensitivity of low clouds to surface temperature advection.

Current affiliation: School of Atmospheric Sciences, Nanjing University, Nanjing, China.

Current affiliations: NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark D. Zelinka, zelinka1@llnl.gov

Abstract

The long-standing expectation that poleward shifts of the midlatitude jet under global warming will lead to poleward shifts of clouds and a positive radiative feedback on the climate system has been shown to be misguided by several recent studies. On interannual time scales, free-tropospheric clouds are observed to shift along with the jet, but low clouds increase across a broad expanse of the North Pacific Ocean basin, resulting in negligible changes in total cloud fraction and top-of-atmosphere radiation. Here it is shown that this low-cloud response is consistent across eight independent satellite-derived cloud products. Using multiple linear regression, it is demonstrated that the spatial pattern and magnitude of the low-cloud-coverage response is primarily driven by anomalous surface temperature advection. In the eastern North Pacific, anomalous cold advection by anomalous northerly surface winds enhances sensible and latent heat fluxes from the ocean into the boundary layer, resulting in large increases in low-cloud coverage. Local increases in low-level stability make a smaller contribution to this low-cloud increase. Despite closely capturing the observed response of large-scale meteorology to jet shifts, global climate models largely fail to capture the observed response of clouds and radiation to interannual jet shifts because they systematically underestimate how sensitive low clouds are to surface temperature advection, and to a lesser extent, low-level stability. More realistic model simulations of cloud–radiation–jet interactions require that parameterizations more accurately capture the sensitivity of low clouds to surface temperature advection.

Current affiliation: School of Atmospheric Sciences, Nanjing University, Nanjing, China.

Current affiliations: NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Mark D. Zelinka, zelinka1@llnl.gov
Save
  • Aumann, H. H., and Coauthors, 2003: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41, 253264, https://doi.org/10.1109/TGRS.2002.808356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and L. Polvani, 2013: Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Climate, 26, 71177135, https://doi.org/10.1175/JCLI-D-12-00536.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 11451163, https://doi.org/10.1175/JAMC-D-11-0203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bender, F. A. M., V. Ramanathan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 20372053, https://doi.org/10.1007/s00382-011-1065-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2009: A new air–sea interaction gridded dataset from ICOADS with uncertainty estimates. Bull. Amer. Meteor. Soc., 90, 645656, https://doi.org/10.1175/2008bams2639.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air–sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, https://doi.org/10.1002/joc.2059.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and Coauthors, 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S., and Coauthors, 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 34453482, https://doi.org/10.1175/JCLI3819.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657.

  • Bretherton, C. S., M. Widmann, V. P. Dymnikov, J. M. Wallace, and I. Blade, 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 19902009, https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brummer, B., 1996: Boundary-layer modification in wintertime cold-air outbreaks from the Arctic sea ice. Bound.-Layer Meteor., 80, 109125, https://doi.org/10.1007/BF00119014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1960: Heat and water-vapor fluxes in air flowing southward over the western North Atlantic Ocean. J. Meteor., 17, 5263., https://doi.org/10.1175/1520-0469(1960)017<0052:HAWVFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2015: Connections between clouds, radiation, and midlatitude dynamics: A review. Curr. Climate Change Rep., 1, 94102, https://doi.org/10.1007/s40641-015-0010-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., and D. L. Hartmann, 2016: Clouds and the atmospheric circulation response to warming. J. Climate, 29, 783799, https://doi.org/10.1175/JCLI-D-15-0394.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, https://doi.org/10.1029/2012GL053115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., M. D. Zelinka, and D. L. Hartmann, 2014: The response of the Southern Hemispheric eddy-driven jet to future changes in shortwave radiation in CMIP5. Geophys. Res. Lett., 41, 32443250, https://doi.org/10.1002/2014GL060043.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ceppi, P., D. T. McCoy, and D. L. Hartmann, 2016: Observational evidence for a negative shortwave cloud feedback in middle to high latitudes. Geophys. Res. Lett., 43, 13311339, https://doi.org/10.1002/2015GL067499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cesana, G., K. Suselj, and F. Brient, 2017: On the dependence of cloud feedbacks on physical parameterizations in WRF aquaplanet simulations. Geophys. Res. Lett., 44, 10 76210 771, https://doi.org/10.1002/2017GL074820.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T., and Coauthors, 2006: AIRS: Improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87, 911926, https://doi.org/10.1175/bams-87-7-911.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., and V. Ramanathan, 1985: The albedo field and cloud radiative forcing produced by a general circulation model with internally generated cloud optics. J. Atmos. Sci., 42, 14081429, https://doi.org/10.1175/1520-0469(1985)042<1408:TAFACR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J. L. Dufresne, and G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704, https://doi.org/10.1029/2008GL034207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chepfer, H., S. Bony, D. Winker, G. Cesana, J. L. Dufresne, P. Minnis, C. J. Stubenrauch, and S. Zeng, 2010: The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J. Geophys. Res., 115, D00H16, https://doi.org/10.1029/2009JD012251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., J. J. Bates, and S. Wahl, 1993: The influence of sea surface temperature gradients on stratiform cloudiness along the equatorial front in the Pacific Ocean. J. Climate, 6, 11721180, https://doi.org/10.1175/1520-0442(1993)006<1172:TIOSST>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diner, D. J., and Coauthors, 2005: The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens. Environ., 97, 495518, https://doi.org/10.1016/j.rse.2005.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastman, R., and S. G. Warren, 2013: A 39-yr survey of cloud changes from land stations worldwide 1971–2009: Long-term trends, relation to aerosols, and expansion of the tropical belt. J. Climate, 26, 12861303, https://doi.org/10.1175/JCLI-D-12-00280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fletcher, J. K., S. Mason, and C. Jakob, 2016: A climatology of clouds in marine cold air outbreaks in both hemispheres. J. Climate, 29, 66776692, https://doi.org/10.1175/JCLI-D-15-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freeman, E., and Coauthors, 2017: ICOADS Release 3.0: A major update to the historical marine climate record. Int. J. Climatol., 37, 22112232, https://doi.org/10.1002/joc.4775.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garay, M. J., S. P. de Szoeke, and C. M. Moroney, 2008: Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations. J. Geophys. Res., 113, D18204, https://doi.org/10.1029/2008JD009975.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Geoffroy, O., S. C. Sherwood, and D. Fuchs, 2017: On the role of the stratiform cloud scheme in the inter-model spread of cloud feedback. J. Adv. Model. Earth Syst., 9, 423437, https://doi.org/10.1002/2016MS000846.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2014: Southern Hemisphere cloud-dynamics biases in CMIP5 models and their implications for climate projections. J. Climate, 27, 60746092, https://doi.org/10.1175/JCLI-D-14-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and B. Medeiros, 2016: Understanding the varied influence of midlatitude jet position on clouds and cloud radiative effects in observations and global climate models. J. Climate, 29, 90059025, https://doi.org/10.1175/JCLI-D-16-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., and L. M. Polvani, 2016: Is climate sensitivity related to dynamical sensitivity? J. Geophys. Res. Atmos., 121, 51595176, https://doi.org/10.1002/2015JD024687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grise, K. M., L. M. Polvani, G. Tselioudis, Y. Wu, and M. D. Zelinka, 2013: The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophys. Res. Lett., 40, 36883692, https://doi.org/10.1002/grl.50675.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., and A. K. Betts, 1990: Air–sea interaction during an extreme cold air outbreak from the eastern coast of the United States. Mon. Wea. Rev., 118, 324342, https://doi.org/10.1175/1520-0493(1990)118<0324:AIDAEC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, https://doi.org/10.1175/2008JAMC1882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., A. T. Evan, M. J. Foster, and A. Walther, 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, https://doi.org/10.1175/JAMC-D-11-02.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. P. Zhao, 2014: The pathfinder atmospheres–extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, https://doi.org/10.1175/bams-d-12-00246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and Coauthors, 2013: The ESA Climate Change Initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, https://doi.org/10.1175/BAMS-D-11-00254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., B. Medeiros, Y. T. Hwang, A. Gettelman, J. Perket, and M. G. Flanner, 2014: Processes controlling Southern Ocean shortwave climate feedbacks in CESM. Geophys. Res. Lett., 41, 616622, https://doi.org/10.1002/2013GL058315.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and C. Jakob, 1999: Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Wea. Rev., 127, 25142531, https://doi.org/10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea-surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155., https://doi.org/10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., A. Hall, J. R. Norris, and R. Pincus, 2017: Low-cloud feedbacks from cloud-controlling factors: A review. Surv. Geophys., 38, 13071329, https://doi.org/10.1007/s10712-017-9433-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, G. L. Stephens, and S. Bony, 2014a: A global survey of the instantaneous linkages between cloud vertical structure and large-scale climate. J. Geophys. Res. Atmos., 119, 37703792, https://doi.org/10.1002/2013JD020669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, Y. Huang, and M. Zhang, 2014b: Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing. Geophys. Res. Lett., 41, 16811688, https://doi.org/10.1002/2013GL059113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., D. W. J. Thompson, and S. Bony, 2015: The influence of atmospheric cloud radiative effects on the large-scale atmospheric circulation. J. Climate, 28, 72637278, https://doi.org/10.1175/JCLI-D-14-00825.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lipat, B. R., G. Tselioudis, K. M. Grise, and L. M. Polvani, 2017: CMIP5 models’ shortwave cloud radiative response and climate sensitivity linked to the climatological Hadley cell extent. Geophys. Res. Lett., 44, 57395748, https://doi.org/10.1002/2017GL073151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. A. Wielicki, P. O. Hinton, and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiant Energy System instrument. J. Appl. Meteor., 40, 822835, https://doi.org/10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, https://doi.org/10.1175/2008JCLI2637.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., and Coauthors, 2018: Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) top-of-atmosphere (TOA) Edition-4.0 data product. J. Climate, 31, 895918, https://doi.org/10.1175/JCLI-D-17-0208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mace, G. G., S. Houser, S. Benson, S. A. Klein, and Q. Min, 2011: Critical evaluation of the ISCCP simulator using ground-based remote sensing data. J. Climate, 24, 15981612, https://doi.org/10.1175/2010JCLI3517.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansbach, D. K., and J. R. Norris, 2007: Low-level cloud variability over the equatorial cold tongue in observations and models. J. Climate, 20, 15551570, https://doi.org/10.1175/JCLI4073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., 2013: Trends in ISCCP, MISR, and MODIS cloud-top-height and optical-depth histograms. J. Geophys. Res. Atmos., 118, 19411949, https://doi.org/10.1002/jgrd.50207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., and T. Ackerman, 2010: An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids. J. Geophys. Res., 115, D16207, https://doi.org/10.1029/2009JD013423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. Ackerman, M. Smyth, and W. B. Rossow, 2010: A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS. J. Geophys. Res., 115, D16206, https://doi.org/10.1029/2009JD013422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marvel, K., M. Zelinka, S. A. Klein, C. Bonfils, P. Caldwell, C. Doutriaux, B. D. Santer, and K. E. Taylor, 2015: External influences on modeled and observed cloud trends. J. Climate, 28, 48204840, https://doi.org/10.1175/JCLI-D-14-00734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGarragh, G. R., and Coauthors, 2018: The Community Cloud retrieval for Climate (CC4CL)—Part 2: The optimal estimation approach. Atmos. Meas. Tech., 11, 33973431, https://doi.org/10.5194/amt-11-3397-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: Ceres edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, https://doi.org/10.1109/TGRS.2011.2144601.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, A., H. Nakamura, and T. Miyasaka, 2018: Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J. Climate, 31, 40174039, https://doi.org/10.1175/JCLI-D-17-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321328, https://doi.org/10.1175/1520-0469(1986)043<0321:TOOCLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, https://doi.org/10.1175/JCLI-D-12-00736.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2015: On the relationships between subtropical clouds and meteorology in observations and CMIP3 and CMIP5 models. J. Climate, 28, 29452967, https://doi.org/10.1175/JCLI-D-14-00475.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2016: Reducing the uncertainty in subtropical cloud feedback. Geophys. Res. Lett., 43, 21442148, https://doi.org/10.1002/2015GL067416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. Del Genio, 2016: The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Noda, A. T., and M. Satoh, 2014: Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models. Geophys. Res. Lett., 41, 77547761, https://doi.org/10.1002/2014GL061812.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998a: Low cloud type over the ocean from surface observations. Part I: Relationship to surface meteorology and the vertical distribution of temperature and moisture. J. Climate, 11, 369382, https://doi.org/10.1175/1520-0442(1998)011<0369:LCTOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., 1998b: Low cloud type over the ocean from surface observations. Part II: Geographical and seasonal variations. J. Climate, 11, 383403, https://doi.org/10.1175/1520-0442(1998)011<0383:LCTOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 48624878, https://doi.org/10.1175/JCLI3558.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Norris, J. R., R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein, 2016: Evidence for climate change in the satellite cloud record. Nature, 536, 7275, https://doi.org/10.1038/nature18273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. P. Hofmann, 2012: Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J. Climate, 25, 46994720, https://doi.org/10.1175/JCLI-D-11-00267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and P. M. Caldwell, 2014: On the spread of changes in marine low cloud cover in climate model simulations of the 21st century. Climate Dyn., 42, 26032626, https://doi.org/10.1007/s00382-013-1945-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qu, X., A. Hall, S. A. Klein, and A. M. DeAngelis, 2015: Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors. Geophys. Res. Lett., 42, 77677775, https://doi.org/10.1002/2015GL065627.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1980: Conditional instability of the first kind upside-down. J. Atmos. Sci., 37, 125130, https://doi.org/10.1175/1520-0469(1980)037<0125:CIOTFK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randall, D. A., 1987: Turbulent fluxes of liquid water and buoyancy in partly cloudy layers. J. Atmos. Sci., 44, 850858, https://doi.org/10.1175/1520-0469(1987)044<0850:TFOLWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 16091625, https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, https://doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozendaal, M. A., C. B. Leovy, and S. A. Klein, 1995: An observational study of diurnal variations of marine stratiform cloud. J. Climate, 8, 17951809, https://doi.org/10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, 1989: MODIS: Advanced facility instrument for studies of the Earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145153, https://doi.org/10.1109/36.20292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seethala, C., J. R. Norris, and T. A. Myers, 2015: How has subtropical stratocumulus and associated meteorology changed since the 1980s? J. Climate, 28, 83968410, https://doi.org/10.1175/JCLI-D-15-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simpson, I. R., T. A. Shaw, and R. Seager, 2014: A diagnosis of the seasonally and longitudinally varying midlatitude circulation response to global warming. J. Atmos. Sci., 71, 24892515, https://doi.org/10.1175/JAS-D-13-0325.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stengel, M., and Coauthors, 2017: Cloud property datasets retrieved from AVHRR, MODIS, AATSR and MERIS in the framework of the Cloud_cci project. Earth Syst. Sci. Data, 9, 881904, https://doi.org/10.5194/essd-9-881-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, https://doi.org/10.1175/BAMS-D-12-00117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sus, O., and Coauthors, 2018: The Community Cloud retrieval for Climate (CC4Cl)—Part 1: A framework applied to multiple satellite imaging sensors. Atmos. Meas. Tech., 11, 33733396, https://doi.org/10.5194/amt-11-3373-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, https://doi.org/10.1029/2000JD900719.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., S. A. Klein, and M. D. Zelinka, 2016: Constraining the low-cloud optical depth feedback at middle and high latitudes using satellite observations. J. Geophys. Res. Atmos., 121, 96969716, https://doi.org/10.1002/2016JD025233.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., B. R. Lipat, D. Konsta, K. M. Grise, and L. M. Polvani, 2016: Midlatitude cloud shifts, their primary link to the Hadley cell, and their diverse radiative effects. Geophys. Res. Lett., 43, 45944601, https://doi.org/10.1002/2016GL068242.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and T. A. Shaw, 2015: Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci., 8, 102106, https://doi.org/10.1038/ngeo2345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wall, C. J., and D. L. Hartmann, 2015: On the influence of poleward jet shift on shortwave cloud feedback in global climate models. J. Adv. Model. Earth Syst., 7, 20442059, https://doi.org/10.1002/2015MS000520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walther, A., and A. K. Heidinger, 2012: Implementation of the daytime cloud optical and microphysical properties algorithm (DCOMP) in PATMOS-x. J. Appl. Meteor. Climatol., 51, 13711390, https://doi.org/10.1175/JAMC-D-11-0108.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, M., C. Senior, S. Bony, and J. J. Morcrette, 2001: Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Climate Dyn., 17, 905922, https://doi.org/10.1007/s003820100157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, https://doi.org/10.1175/2009JTECHA1281.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R., and C. S. Bretherton, 2006: On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19, 64256432, https://doi.org/10.1175/JCLI3988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, Q., B. H. Kahn, E. J. Fetzer, S. Wong, R. Frey, and K. G. Meyer, 2017: On the response of MODIS cloud coverage to global mean surface air temperature. J. Geophys. Res. Atmos., 122, 966979, https://doi.org/10.1002/2016JD025174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., S. A. Klein, and D. L. Hartmann, 2012a: Computing and partitioning cloud feedbacks using cloud property histograms. Part I: Cloud radiative kernels. J. Climate, 25, 37153735, https://doi.org/10.1175/JCLI-D-11-00248.1.

    • Crossref