Multidecadal Changes of the Upper Indian Ocean Heat Content during 1965–2016

Yuanlong Li Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, and Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado, and Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Search for other papers by Yuanlong Li in
Current site
Google Scholar
PubMed
Close
,
Weiqing Han Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Weiqing Han in
Current site
Google Scholar
PubMed
Close
,
Aixue Hu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Aixue Hu in
Current site
Google Scholar
PubMed
Close
,
Gerald A. Meehl National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Gerald A. Meehl in
Current site
Google Scholar
PubMed
Close
, and
Fan Wang Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, and Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

Search for other papers by Fan Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ocean heat uptake is the primary heat sink of the globe and modulates its surface warming rate. In situ observations during the past half century documented obvious multidecadal variations in the upper-ocean heat content (0–400 m; OHC400) of the Indian Ocean (IO). The observed OHC400 showed an increase of (5.9 ± 2.5) × 1021 J decade−1 during 1965–79, followed by a decrease of (−5.2 ± 2.5) × 1021 J decade−1 during 1980–96, and a rapid increase of (13.6 ± 1.1) × 1021 J decade−1 during 2000–14. These variations are faithfully reproduced by an Indo-Pacific simulation of an ocean general circulation model (OGCM), and insights into the underlying mechanisms are gained through OGCM experiments. The Pacific wind forcing through the Indonesian Throughflow (ITF) was the leading driver of the basin-integrated OHC400 increase during 1965–79 and the decrease during 1980–96, whereas after 2000 local wind and heat flux forcing within the IO made a larger contribution. The ITF heat transport is primarily dictated by Pacific trade winds. It directly affects the south IO, after which the signatures can enter the north IO through the meridional heat transport of the western boundary current. The prevailing warming of the western-to-central IO for 2000–14 was largely induced by equatorial easterly wind trends, Ekman downwelling off the equator, and northeasterly wind trends over the west Asia–East Africa coastal region. The increasing downward longwave radiation, probably reflecting anthropogenic greenhouse gas forcing, overcame the decreasing surface shortwave radiation and also made a significant contribution to the rapid upper-IO warming after 2000.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0116.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Abstract

Ocean heat uptake is the primary heat sink of the globe and modulates its surface warming rate. In situ observations during the past half century documented obvious multidecadal variations in the upper-ocean heat content (0–400 m; OHC400) of the Indian Ocean (IO). The observed OHC400 showed an increase of (5.9 ± 2.5) × 1021 J decade−1 during 1965–79, followed by a decrease of (−5.2 ± 2.5) × 1021 J decade−1 during 1980–96, and a rapid increase of (13.6 ± 1.1) × 1021 J decade−1 during 2000–14. These variations are faithfully reproduced by an Indo-Pacific simulation of an ocean general circulation model (OGCM), and insights into the underlying mechanisms are gained through OGCM experiments. The Pacific wind forcing through the Indonesian Throughflow (ITF) was the leading driver of the basin-integrated OHC400 increase during 1965–79 and the decrease during 1980–96, whereas after 2000 local wind and heat flux forcing within the IO made a larger contribution. The ITF heat transport is primarily dictated by Pacific trade winds. It directly affects the south IO, after which the signatures can enter the north IO through the meridional heat transport of the western boundary current. The prevailing warming of the western-to-central IO for 2000–14 was largely induced by equatorial easterly wind trends, Ekman downwelling off the equator, and northeasterly wind trends over the west Asia–East Africa coastal region. The increasing downward longwave radiation, probably reflecting anthropogenic greenhouse gas forcing, overcame the decreasing surface shortwave radiation and also made a significant contribution to the rapid upper-IO warming after 2000.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-18-0116.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuanlong Li, liyuanlong@qdio.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 4.22 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allan, R. J., J. Lindesay, and C. Reason, 1995: Multidecadal variability in the climate system over the Indian Ocean region during the austral summer. J. Climate, 8, 18531873, https://doi.org/10.1175/1520-0442(1995)008<1853:MVITCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, https://doi.org/10.1029/2006GL028044.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beal, L. M., and Coauthors, 2011: On the role of the Agulhas system in ocean circulation and climate. Nature, 472, 429436, https://doi.org/10.1038/nature09983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms, 2009: Increase in Agulhas leakage due to poleward shift in the Southern Hemisphere westerlies. Nature, 462, 495498, https://doi.org/10.1038/nature08519.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollasina, M. A., Y. Ming, and V. Ramaswamy, 2011: Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334, 502505, https://doi.org/10.1126/science.1204994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., G. Meyers, and G. Shi, 2005: Transmission of ENSO signal to the Indian Ocean. Geophys. Res. Lett., 32, L05616, https://doi.org/10.1029/2004GL021736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., D. Bi, J. Church, T. Cowan, M. Dix, and L. Rotstayn, 2006: Panoceanic response to increasing anthropogenic aerosols: Impacts on the Southern Hemisphere oceanic circulation. Geophys. Res. Lett., 33, L21707, https://doi.org/10.1029/2006GL027513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cai, W., T. Cowan, M. Dix, L. Rotstayn, J. Ribbe, G. Shi, and S. Wijffels, 2007: Anthropogenic aerosol forcing and the structure of temperature trends in the southern Indian Ocean. Geophys. Res. Lett., 34, L14611, https://doi.org/10.1029/2007GL030380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, https://doi.org/10.1175/2007MWR1978.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res., 110, C09006, https://doi.org/10.1029/2004JC002817.

    • Search Google Scholar
    • Export Citation
  • Chen, X., and K.-K. Tung, 2014: Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 345, 897903, https://doi.org/10.1126/science.1254937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., F. Zheng, and J. Zhu, 2015: Distinctive ocean interior changes during the recent warming slowdown. Sci. Rep., 5, 14346, https://doi.org/10.1038/srep14346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., and Coauthors, 2016: XBT science: Assessment of instrumental biases and errors. Bull. Amer. Meteor. Soc., 97, 924933, https://doi.org/10.1175/BAMS-D-15-00031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, L., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and X. Liu, 1994: Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24, 12241235, https://doi.org/10.1175/1520-0485(1994)024<1224:ISLITN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 128, https://doi.org/10.1002/qj.776.

  • Dai, A., T. Qian, K. E. Trenberth, and J. D. Milliman, 2009: Changes in continental freshwater discharge from 1948 to 2004. J. Climate, 22, 27732792, https://doi.org/10.1175/2008JCLI2592.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and T. Zhou, 2014: The Indian Ocean sea surface temperature warming simulated by CMIP5 models during the twentieth century: Competing forcing roles of GHGs and anthropogenic aerosols. J. Climate, 27, 33483362, https://doi.org/10.1175/JCLI-D-13-00396.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2016: Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus. J. Climate, 29, 90779095, https://doi.org/10.1175/JCLI-D-16-0130.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., and M. J. McPhaden, 2017: Why has the relationship between Indian and Pacific Ocean decadal variability changed in recent decades? J. Climate, 30, 19711983, https://doi.org/10.1175/JCLI-D-16-0313.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, L., T. Zhou, and B. Wu, 2014: Indian Ocean warming during 1958–2004 simulated by a climate system model and its mechanism. Climate Dyn., 42, 203217, https://doi.org/10.1007/s00382-013-1722-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Du, Y., and S. P. Xie, 2008: Role of atmospheric adjustments in the TIO warming during the 20th century in climate models. Geophys. Res. Lett., 35, L08712, https://doi.org/10.1029/2008GL033631.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and M. F. Wehner, 2009: Is the climate warming or cooling? Geophys. Res. Lett., 36, L08706, https://doi.org/10.1029/2009GL037810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • England, M. H., and Coauthors, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222227, https://doi.org/10.1038/nclimate2106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C., E. F. Bradley, J. Hare, A. Grachev, and J. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., Y. Li, and G. Meyers, 2004: Multidecadal variations of Fremantle sea level: Footprint of climate variability in the tropical Pacific. Geophys. Res. Lett., 31, L16302, https://doi.org/10.1029/2004GL019947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., M. J. McPhaden, S.-P. Xie, and J. Hafner, 2013: La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep., 3, 1277, https://doi.org/10.1038/srep01277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, M., H. H. Hendon, S.-P. Xie, A. G. Marshall, A. Schiller, Y. Kosaka, N. Caputi, and A. Pearce, 2015: Decadal increase in Ningaloo Niño since the late 1990s. Geophys. Res. Lett., 42, 104112, https://doi.org/10.1002/2014gl062509.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gleckler, P., T. Wigley, B. Santer, J. Gregory, K. AchutaRao, and K. Taylor, 2006: Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature, 439, 675–675, https://doi.org/10.1038/439675a.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Good, S. A., M. J. Martin, and N. A. Rayner, 2013: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Oceans, 118, 67046716, https://doi.org/10.1002/2013JC009067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1985: Indian-Atlantic transfer of thermocline water at the Agulhas Retroflection. Science, 227, 10301033, https://doi.org/10.1126/science.227.4690.1030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Halliwell, G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modell., 7, 285322, https://doi.org/10.1016/j.ocemod.2003.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and P. J. Webster, 2002: Forcing mechanisms of sea level interannual variability in the Bay of Bengal. J. Phys. Oceanogr., 32, 216239, https://doi.org/10.1175/1520-0485(2002)032<0216:FMOSLI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary Jr., D. Anderson, and A. J. Mariano, 1999: Dynamics of the eastern surface jets in the equatorial Indian Ocean. J. Phys. Oceanogr., 29, 21912209, https://doi.org/10.1175/1520-0485(1999)029<2191:DOTESJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, and A. Hu, 2006: Interpretation of tropical thermocline cooling in the Indian and Pacific Oceans during recent decades. Geophys. Res. Lett., 33, L23615, https://doi.org/10.1029/2006GL027982.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., and Coauthors, 2010: Patterns of Indian Ocean sea-level change in a warming climate. Nat. Geosci., 3, 546550, https://doi.org/10.1038/ngeo901.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. P. McCreary Jr., Y. Masumoto, J. Vialard, and B. Duncan, 2011: Basin resonances in the equatorial Indian Ocean. J. Phys. Oceanogr., 41, 12521270, https://doi.org/10.1175/2011JPO4591.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., J. Vialard, M. J. McPhaden, T. Lee, Y. Masumoto, M. Feng, W. P. M. de Ruijter, 2014: Indian Ocean decadal variability: A review. Bull. Amer. Meteor. Soc., 95, 16791703, https://doi.org/10.1175/BAMS-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, A. Hu, J. Zheng, J. Kenigson, J. Vialard, B. Rajagopalan, and Yanto, 2017a: Decadal variability of Indian and Pacific Walker cells since the 1960s: Do they covary on decadal time scales? J. Climate, 30, 84478468, https://doi.org/10.1175/JCLI-D-16-0783.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Han, W., G. A. Meehl, D. Stammer, A. Hu, B. Hamlington, J. Kenigson, H. Palanisamy, and P. Thompson, 2017b: Spatial patterns of sea level variability associated with natural internal climate modes. Surv. Geophys., 38, 217250, https://doi.org/10.1007/s10712-016-9386-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henley, B., J. Gergis, D. Karoly, S. Power, J. Kennedy, and C. Folland, 2015: A tripole index for the interdecadal Pacific oscillation. Climate Dyn., 45, 30773090, https://doi.org/10.1007/s00382-015-2525-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865879, https://doi.org/10.1002/joc.1169.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kara, A. B., H. E. Hurlburt, and A. J. Wallcraft, 2005: Stability-dependent exchange coefficients for air–sea fluxes. J. Atmos. Oceanic Technol., 22, 10801094, https://doi.org/10.1175/JTECH1747.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917932, https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403407, https://doi.org/10.1038/nature12534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kosaka, Y., and S.-P. Xie, 2016: The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci., 9, 669673, https://doi.org/10.1038/ngeo2770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, S.-K., W. Park, M. O. Baringer, A. L. Gordon, B. Huber, and Y. Liu, 2015: Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci., 8, 445449, https://doi.org/10.1038/ngeo2438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., 2004: Decadal weakening of the shallow overturning circulation in the south Indian Ocean. Geophys. Res. Lett., 31, L18305, https://doi.org/10.1029/2004GL020884; Corrigendum, 31, L22302, https://doi.org/10.1029/2004GL021774.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, T., and M. J. McPhaden, 2008: Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett., 35, L01605, https://doi.org/10.1029/2007GL032419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., F. Nadal, and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, https://doi.org/10.1175/1520-0426(1998)015<0522:AIMMOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, X., S.-P. Xie, S. T. Gille, and C. Yoo, 2016: Atlantic-induced pan-tropical climate change over the past three decades. Nat. Climate Change, 6, 275279, https://doi.org/10.1038/nclimate2840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and W. Han, 2015: Decadal sea level variations in the Indian Ocean investigated with HYCOM: Roles of climate modes, ocean internal variability, and stochastic wind forcing. J. Climate, 28, 91439165, https://doi.org/10.1175/JCLI-D-15-0252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and F. Wang, 2015: Thermocline spiciness variations in the tropical Indian Ocean observed during 2003–2014. Deep-Sea Res. I, 97, 5266, https://doi.org/10.1016/j.dsr.2014.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., W. Han, and L. Zhang, 2017: Enhanced decadal warming of the southeast Indian Ocean during the recent global surface warming slowdown. Geophys. Res. Lett., 44, 98769884, https://doi.org/10.1002/2017GL075050.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liang, X., and L. Yu, 2016: Variations of the global net air–sea heat flux during the “hiatus” period (2001–10). J. Climate, 29, 36473660, https://doi.org/10.1175/JCLI-D-15-0626.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, W., S.-P. Xie, and J. Lu, 2016: Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun., 7, 10926, https://doi.org/10.1038/ncomms10926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llovel, W., and T. Lee, 2015: Importance and origin of halosteric contribution to sea level change in the southeast Indian Ocean during 2005–2013. Geophys. Res. Lett., 42, 11481157, https://doi.org/10.1002/2014GL062611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., and Coauthors, 2013 : Temperature. Vol. 1, World Ocean Atlas 2013, NOAA Atlas NESDIS 73, 40 pp., http://data.nodc.noaa.gov/woa/WOA13/DOC/woa13_vol1.pdf.

  • McGregor, S., A. Timmermann, M. F. Stuecker, M. H. England, M. Merrifield, F.-F. Jin, and Y. Chikamoto, 2014: Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Climate Change, 4, 888892, https://doi.org/10.1038/nclimate2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., J. M. Arblaster, J. T. Fasullo, A. Hu, and K. E. Trenberth, 2011: Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Climate Change, 1, 360364, https://doi.org/10.1038/nclimate1229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., H. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nat. Climate Change, 4, 898902, https://doi.org/10.1038/nclimate2357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., A. Hu, B. D. Santer, and S.-P. Xie, 2016: Contribution of the interdecadal Pacific oscillation to twentieth-century global surface temperature trends. Nat. Climate Change, 6, 10051008, https://doi.org/10.1038/nclimate3107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyers, G., 1996: Variation of Indonesian Throughflow and the El Niño-Southern Oscillation. J. Geophys. Res., 101, 12 25512 263, https://doi.org/10.1029/95JC03729.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520, https://doi.org/10.1126/science.1185782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nidheesh, A. G., M. Lengaigne, J. Vialard, A. S. Unnikrishnan, and H. Dayan, 2013: Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Climate Dyn., 41, 381402, https://doi.org/10.1007/s00382-012-1463-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieves, V., J. K. Willis, and W. C. Patzert, 2015: Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, 349, 532535, https://doi.org/10.1126/science.aaa4521.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanalysis of the twentieth century. J. Climate, 29, 40834097, https://doi.org/10.1175/JCLI-D-15-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319324, https://doi.org/10.1007/s003820050284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., and Coauthors, 2011: MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Climate, 24, 36243648, https://doi.org/10.1175/JCLI-D-11-00015.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated planetary warming and its ocean structure since 2006. Nat. Climate Change, 5, 240245, https://doi.org/10.1038/nclimate2513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. N. Goswami, 2015: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land–sea thermal gradient. Nat. Commun., 6, 7423, https://doi.org/10.1038/ncomms8423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roxy, M. K., and Coauthors, 2016: A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett., 43, 826833, https://doi.org/10.1002/2015gl066979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, https://doi.org/10.1175/2010BAMS3001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363, https://doi.org/10.1038/43854.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., M. Dengler, and R. Schoenefeldt, 2002: The shallow overturning circulation of the Indian Ocean. Prog. Oceanogr., 53, 57103, https://doi.org/10.1016/S0079-6611(02)00039-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schott, F. A., S.-P. Xie, and J. P. McCreary Jr., 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, F. U., and C. W. Böning, 2011: Contribution of Pacific wind stress to multi‐decadal variations in upper‐ocean heat content and sea level in the tropical south Indian Ocean. Geophys. Res. Lett., 38, L12602, https://doi.org/10.1029/2011GL047651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sérazin, G., B. Meyssignac, T. Penduff, L. Terray, B. Barnier, and J.-M. Molines, 2016: Quantifying uncertainties on regional sea level change induced by multidecadal intrinsic oceanic variability. Geophys. Res. Lett., 43, 81518159, https://doi.org/10.1002/2016GL069273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shankar, D., S. G. Aparna, J. P. McCreary, I. Suresh, S. Neetu, F. Durand, S. S. C. Shenoi, and M. A. Al Saafani, 2010: Minima of interannual sea-level variability in the Indian Ocean. Prog. Oceanogr., 84, 225241, https://doi.org/10.1016/j.pocean.2009.10.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., 2016: South Asian monsoon: Tug of war on rainfall changes. Nat. Climate Change, 6, 2022, https://doi.org/10.1038/nclimate2901.

  • Smith, D. M., and Coauthors, 2016: Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Climate Change, 6, 936940, https://doi.org/10.1038/nclimate3058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprintall, J., A. L. Gordon, A. Koch-Larrouy, T. Lee, J. T. Potemra, K. Pujiana, and S. E. Wijffels, 2014: The Indonesian seas and their role in the coupled ocean–climate system. Nat. Geosci., 7, 487492, https://doi.org/10.1038/ngeo2188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srinivasu, U., M. Ravichandran, W. Han, S. Sivareddy, H. Rahman, Y. Li, and S. Nayak, 2017: Causes for the reversal of north Indian Ocean decadal sea level trend in recent two decades. Climate Dyn., 49, 38873904, https://doi.org/10.1007/s00382-017-3551-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sura, P., M. Newman, and M. A. Alexander, 2006: Daily to decadal sea surface temperature variability driven by state-dependent stochastic heat fluxes. J. Phys. Oceanogr., 36, 19401958, https://doi.org/10.1175/JPO2948.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swapna, P., J. Jyoti, R. Krishnan, N. Sandeep, and S. M. Griffies, 2017: Multidecadal weakening of Indian summer monsoon circulation induces an increasing northern Indian Ocean sea level. Geophys. Res. Lett., 44, 10 56010 572, https://doi.org/10.1002/2017GL074706.

    • Crossref
    • Search Google Scholar