Can ENSO-Like Convection Force an ENSO-Like Extratropical Response on Subseasonal Time Scales?

Michael Goss Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, and Department of Earth System Science, Stanford University, Stanford, California

Search for other papers by Michael Goss in
Current site
Google Scholar
PubMed
Close
,
Sukyoung Lee Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Sukyoung Lee in
Current site
Google Scholar
PubMed
Close
,
Steven B. Feldstein Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
, and
Noah S. Diffenbaugh Department of Earth System Science, and Woods Institute for the Environment, Stanford University, Stanford, California

Search for other papers by Noah S. Diffenbaugh in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A daily El Niño–Southern Oscillation (ENSO) index is developed based on precipitation rate and is used to investigate subseasonal time-scale extratropical circulation anomalies associated with ENSO-like convective heating. The index, referred to as the El Niño precipitation index (ENPI), is anomalously positive when there is El Niño–like convection. Conversely, the ENPI is anomalously negative when there is La Niña–like convection. It is found that when precipitation becomes El Niño–like (La Niña–like) on subseasonal time scales, the 300-hPa geopotential height field over the North Pacific and western North America becomes El Niño–like (La Niña–like) within 5–10 days. The composites show a small association with the MJO. These results are supported by previous modeling studies, which show that the response over the North Pacific and western North America to an equatorial Pacific heating anomaly occurs within about one week. This suggests that the mean seasonal extratropical response to El Niño (La Niña) may in effect simply be the average of the subseasonal response to subseasonally varying El Niño–like (La Niña–like) convective heating. Implications for subseasonal to seasonal forecasting are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0771.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Goss, goss@stanford.edu

Abstract

A daily El Niño–Southern Oscillation (ENSO) index is developed based on precipitation rate and is used to investigate subseasonal time-scale extratropical circulation anomalies associated with ENSO-like convective heating. The index, referred to as the El Niño precipitation index (ENPI), is anomalously positive when there is El Niño–like convection. Conversely, the ENPI is anomalously negative when there is La Niña–like convection. It is found that when precipitation becomes El Niño–like (La Niña–like) on subseasonal time scales, the 300-hPa geopotential height field over the North Pacific and western North America becomes El Niño–like (La Niña–like) within 5–10 days. The composites show a small association with the MJO. These results are supported by previous modeling studies, which show that the response over the North Pacific and western North America to an equatorial Pacific heating anomaly occurs within about one week. This suggests that the mean seasonal extratropical response to El Niño (La Niña) may in effect simply be the average of the subseasonal response to subseasonally varying El Niño–like (La Niña–like) convective heating. Implications for subseasonal to seasonal forecasting are discussed.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0771.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Michael Goss, goss@stanford.edu

Supplementary Materials

    • Supplemental Materials (PDF 2.28 MB)
Save
  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 22052231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2013: El Niño impacts on seasonal U.S. atmospheric circulation, temperature, and precipitation anomalies: The OLR event perspective. J. Climate, 26, 822837, https://doi.org/10.1175/JCLI-D-12-00097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiodi, A. M., and D. E. Harrison, 2015: Global seasonal precipitation anomalies robustly associated with El Niño and La Niña events—An OLR perspective. J. Climate, 28, 61336159, https://doi.org/10.1175/JCLI-D-14-00387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dai, Y., S. B. Feldstein, B. Tan, and S. Lee, 2017: Formation mechanisms of the Pacific–North American teleconnection with and without its canonical tropical convection pattern. J. Climate, 30, 31393155, https://doi.org/10.1175/JCLI-D-16-0411.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C., S. B. Feldstein, and S. Lee, 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346, https://doi.org/10.1002/qj.768.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloersen, P., 1995: Modulation of hemispheric sea-ice cover by ENSO events. Nature, 373, 503506, https://doi.org/10.1038/373503a0.

  • Goss, M., and S. B. Feldstein, 2017: Why do similar patterns of tropical convection yield extratropical circulation anomalies of opposite sign? J. Atmos. Sci., 74, 487511, https://doi.org/10.1175/JAS-D-16-0067.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M. and S. B. Feldstein, 2018: Testing the sensitivity of the extratropical response to the location, amplitude, and propagation speed of tropical convection. J. Atmos. Sci., 75, 639655, https://doi.org/10.1175/JAS-D-17-0132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goss, M., S. B. Feldstein, and S. Lee, 2016: Stationary wave interference and its relation to tropical convection and Arctic warming. J. Climate, 29, 13691389, https://doi.org/10.1175/JCLI-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanley, D. E., M. A. Bourassa, J. J. O’Brien, S. R. Smith, and E. R. Spade, 2003: A quantitative evaluation of ENSO indices. J. Climate, 16, 12491258, https://doi.org/10.1175/1520-0442(2003)16<1249:AQEOEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jevrejeva, S., J. C. Moore, and A. Grinsted, 2003: Influence of the Arctic Oscillation and El Niño–Southern Oscillation (ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res., 108, 4677, https://doi.org/10.1029/2003JD003417.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867, https://doi.org/10.1175/2009JCLI3099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, N. C., and Y. Kosaka, 2016: The impact of eastern equatorial Pacific convection on the diversity of boreal winter El Niño teleconnection patterns. Climate Dyn., 47, 37373765, https://doi.org/10.1007/s00382-016-3039-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Julian, P. R., and R. M. Chervin, 1978: A study of the Southern Oscillation and Walker circulation phenomenon. Mon. Wea. Rev., 106, 14331451, https://doi.org/10.1175/1520-0493(1978)106<1433:ASOTSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., 1997: Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull. Amer. Meteor. Soc., 78, 2134, https://doi.org/10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, J., J. A. Curry, and Y. Hu, 2004: Recent Arctic sea ice variability: Connections to the Arctic Oscillation and the ENSO. Geophys. Res. Lett., 31, L09211, https://doi.org/10.1029/2004GL019858.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, M., and M. Watanabe, 2008: The growth and triggering mechanisms of the PNA: A MJO–PNA coherence. J. Meteor. Soc. Japan, 86, 213236, https://doi.org/10.2151/jmsj.86.213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño/Southern Oscillation. Science, 222, 11951202, https://doi.org/10.1126/science.222.4629.1195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and M. S. Halpert, 1986: North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon. Wea. Rev., 114, 23522362, https://doi.org/10.1175/1520-0493(1986)114<2352:NAPATP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteor. Soc., 78, 27712777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 29114 324, https://doi.org/10.1029/97JC01444.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012a: Mechanisms of extratropical surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790, https://doi.org/10.1175/JCLI-D-11-00566.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoo, C., S. Lee, and S. B. Feldstein, 2012b: Arctic response to an MJO-like tropical heating in an idealized GCM. J. Atmos. Sci., 69, 23792393, https://doi.org/10.1175/JAS-D-11-0261.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y., J. M. Wallace, and N. Iwasaka, 1996: Is climate variability over the North Pacific a linear response to ENSO? J. Climate, 9, 14681478, https://doi.org/10.1175/1520-0442(1996)009<1468:ICVOTN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 986 494 32
PDF Downloads 497 87 8