Estimating Changes in Temperature Distributions in a Large Ensemble of Climate Simulations Using Quantile Regression

Matz A. Haugen University of Chicago, Chicago, Illinois

Search for other papers by Matz A. Haugen in
Current site
Google Scholar
PubMed
Close
,
Michael L. Stein University of Chicago, Chicago, Illinois

Search for other papers by Michael L. Stein in
Current site
Google Scholar
PubMed
Close
,
Elisabeth J. Moyer University of Chicago, Chicago, Illinois

Search for other papers by Elisabeth J. Moyer in
Current site
Google Scholar
PubMed
Close
, and
Ryan L. Sriver University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Ryan L. Sriver in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Understanding future changes in extreme temperature events in a transient climate is inherently challenging. A single model simulation is generally insufficient to characterize the statistical properties of the evolving climate, but ensembles of repeated simulations with different initial conditions greatly expand the amount of data available. We present here a new approach for using ensembles to characterize changes in temperature distributions based on quantile regression that more flexibly characterizes seasonal changes. Specifically, our approach uses a continuous representation of seasonality rather than breaking the dataset into seasonal blocks; that is, we assume that temperature distributions evolve smoothly both day to day over an annual cycle and year to year over longer secular trends. To demonstrate our method’s utility, we analyze an ensemble of 50 simulations of the Community Earth System Model (CESM) under a scenario of increasing radiative forcing to 2100, focusing on North America. As previous studies have found, we see that daily temperature bulk variability generally decreases in wintertime in the continental mid- and high latitudes (>40°). A more subtle result that our approach uncovers is that differences in two low quantiles of wintertime temperatures do not shrink as much as the rest of the temperature distribution, producing a more negative skew in the overall distribution. Although the examples above concern temperature only, the technique is sufficiently general that it can be used to generate precise estimates of distributional changes in a broad range of climate variables by exploiting the power of ensembles.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0782.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matz A. Haugen, matz.haugen@orbitalinsight.com

Abstract

Understanding future changes in extreme temperature events in a transient climate is inherently challenging. A single model simulation is generally insufficient to characterize the statistical properties of the evolving climate, but ensembles of repeated simulations with different initial conditions greatly expand the amount of data available. We present here a new approach for using ensembles to characterize changes in temperature distributions based on quantile regression that more flexibly characterizes seasonal changes. Specifically, our approach uses a continuous representation of seasonality rather than breaking the dataset into seasonal blocks; that is, we assume that temperature distributions evolve smoothly both day to day over an annual cycle and year to year over longer secular trends. To demonstrate our method’s utility, we analyze an ensemble of 50 simulations of the Community Earth System Model (CESM) under a scenario of increasing radiative forcing to 2100, focusing on North America. As previous studies have found, we see that daily temperature bulk variability generally decreases in wintertime in the continental mid- and high latitudes (>40°). A more subtle result that our approach uncovers is that differences in two low quantiles of wintertime temperatures do not shrink as much as the rest of the temperature distribution, producing a more negative skew in the overall distribution. Although the examples above concern temperature only, the technique is sufficiently general that it can be used to generate precise estimates of distributional changes in a broad range of climate variables by exploiting the power of ensembles.

Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JCLI-D-17-0782.s1.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Matz A. Haugen, matz.haugen@orbitalinsight.com

Supplementary Materials

    • Supplemental Materials (PDF 1.50 MB)
Save
  • Basler, D., 2016: Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteor., 217, 1021, https://doi.org/10.1016/j.agrformet.2015.11.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bondell, H. D., B. J. Reich, and H. Wang, 2010: Noncrossing quantile regression curve estimation. Biometrika, 97, 825838, https://doi.org/10.1093/biomet/asq048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chapman, S. C., D. A. Stainforth, and N. W. Watkins, 2013: On estimating local long-term climate trends. Philos. Trans. Roy. Soc. A, 371, 20120287, https://doi.org/10.1098%2Frsta.2012.0287.

    • Search Google Scholar
    • Export Citation
  • Chavez-Demoulin, V., and A. C. Davison, 2005: Generalized additive modelling of sample extremes. J. Roy. Stat. Soc. C., 54, 207222, https://doi.org/10.1111/j.1467-9876.2005.00479.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davison, A. C., and R. L. Smith, 1990: Models for exceedances over high thresholds. J. Roy. Stat. Soc. B, 52, 393442.

  • Davison, A. C., S. A. Padoan, and M. Ribatet, 2012: Statistical modeling of spatial extremes. Stat. Sci., 27, 161186, https://doi.org/10.1214/11-STS376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., R. Knutti, S. Solomon, and A. S. Phillips, 2012a: Communication of the role of natural variability in future North American climate. Nat. Climate Change, 2, 775779, https://doi.org/10.1038/nclimate1562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012b: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, https://doi.org/10.1007/s00382-010-0977-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deser, C., A. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, https://doi.org/10.1175/JCLI-D-13-00451.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., D. L. Swain, and D. Touma, 2015: Anthropogenic warming has increased drought risk in California. Proc. Natl. Acad. Sci. USA, 112, 39313936, https://doi.org/10.1073/pnas.1422385112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donat, M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, https://doi.org/10.1029/2012GL052459.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eastoe, E. F., and J. A. Tawn, 2009: Modelling non-stationary extremes with application to surface level ozone. J. Roy. Stat. Soc. C, 58, 2545, https://doi.org/10.1111/j.1467-9876.2008.00638.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and C. Schär, 2009: Future changes in daily summer temperature variability: Driving processes and role for temperature extremes. Climate Dyn., 33, 917, https://doi.org/10.1007/s00382-008-0473-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, E. M., and R. Knutti, 2014: Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett., 41, 547554, https://doi.org/10.1002/2013GL058499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franzke, C. L., 2015: Local trend disparities of European minimum and maximum temperature extremes. Geophys. Res. Lett., 42, 64796484, https://doi.org/10.1002/2015GL065011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., and C. L. Franzke, 2017: Quantile regression–based spatiotemporal analysis of extreme temperature change in China. J. Climate, 30, 98979914, https://doi.org/10.1175/JCLI-D-17-0356.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hagos, S. M., L. R. Leung, J.-H. Yoon, J. Lu, and Y. Gao, 2016: A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett., 43, 13571363, https://doi.org/10.1002/2015GL067392.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hastie, T., R. Tibshirani, and J. Friedman, 2009: The Elements of Statistical Learning. 2nd ed. Springer, 745 pp.

    • Crossref
    • Export Citation
  • Hogan, E., and R. Sriver, 2017: Analyzing the effect of ocean internal variability on depth-integrated steric sea-level rise trends using a low-resolution CESM ensemble. Water, 9, 483, https://doi.org/10.3390/w9070483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, W. K., M. L. Stein, D. J. McInerney, S. Sun, and E. J. Moyer, 2016: Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions. Adv. Stat. Climatol. Meteor. Oceanogr., 2, 79103, https://doi.org/10.5194/ascmo-2-79-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huser, R., and A. Davison, 2014: Space–time modelling of extreme events. J. Roy. Stat. Soc. B, 76, 439461, https://doi.org/10.1111/rssb.12035.

  • Huybers, P., K. A. McKinnon, A. Rhines, and M. Tingley, 2014: U.S. daily temperatures: The meaning of extremes in the context of nonnormality. J. Climate, 27, 73687384, https://doi.org/10.1175/JCLI-D-14-00216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jalbert, J., A.-C. Favre, C. Bélisle, and J.-F. Angers, 2017: A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America. J. Roy. Stat. Soc. C, 66, 941962, https://doi.org/10.1111/rssc.12212.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289302, https://doi.org/10.1007/BF00139728.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kitoh, A., and T. Mukano, 2009: Changes in daily and monthly surface air temperature variability by multi-model global warming experiments. J. Meteor. Soc. Japan Ser. II, 87, 513524, https://doi.org/10.2151/jmsj.87.513.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koenker, R., and G. Bassett Jr., 1978: Regression quantiles. Econometrica, 46, 3350, https://doi.org/10.2307/1913643.

  • McKinnon, K. A., A. Rhines, M. P. Tingley, and P. Huybers, 2016: The changing shape of Northern Hemisphere summer temperature distributions. J. Geophys. Res. Atmos., 121, 88498868, https://doi.org/10.1002/2016JD025292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., C. Tebaldi, G. Walton, D. Easterling, and L. McDaniel, 2009: Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys. Res. Lett., 36, L23701, https://doi.org/10.1029/2009GL040736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Northrop, P. J., and P. Jonathan, 2011: Threshold modelling of spatially dependent non-stationary extremes with application to hurricane-induced wave heights. Environmetrics, 22, 799809, https://doi.org/10.1002/env.1106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otto, F. E. L., N. Massey, G. J. Oldenborgh, R. G. Jones, and M. R. Allen, 2012: Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett., 39, L04702, https://doi.org/10.1029/2011GL050422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pearse, W. D., C. C. Davis, D. W. Inouye, R. B. Primack, and T. J. Davies, 2017: A statistical estimator for determining the limits of contemporary and historic phenology. Nat. Ecol. Evol., 1, 18761882, https://doi.org/10.1038/s41559-017-0350-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poppick, A., E. J. Moyer, and M. L. Stein, 2017: Estimating trends in the global mean temperature record. Adv. Stat. Climatol. Meteor. Oceanogr., 3, 3353, https://doi.org/10.5194/ascmo-3-33-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Portnoy, S., and R. Koenker, 1997: The Gaussian hare and the Laplacian tortoise: Computability of squared-error versus absolute-error estimators. Stat. Sci., 12, 279300, https://doi.org/10.1214/ss/1030037960.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Räisänen, J., 2002: CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J. Climate, 15, 23952411, https://doi.org/10.1175/1520-0442(2002)015<2395:CICIIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reich, B. J., M. Fuentes, and D. B. Dunson, 2011: Bayesian spatial quantile regression. J. Amer. Stat. Assoc., 106, 620, https://doi.org/10.1198/jasa.2010.ap09237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rhines, A., K. A. McKinnon, M. P. Tingley, and P. Huybers, 2017: Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Climate, 30, 11391157, https://doi.org/10.1175/JCLI-D-16-0363.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, K. B., J. Lin, and T. L. Frölicher, 2015: Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences, 12, 33013320, https://doi.org/10.5194/bg-12-3301-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, T., T. Bischoff, and H. Płotka, 2015: Physics of changes in synoptic midlatitude temperature variability. J. Climate, 28, 23122331, https://doi.org/10.1175/JCLI-D-14-00632.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, M. D., R. Ahas, and A. Aasa, 2006: Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol., 12, 343351, https://doi.org/10.1111/j.1365-2486.2005.01097.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Screen, J. A., 2014: Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Climate Change, 4, 577582, https://doi.org/10.1038/nclimate2268.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Semenov, V., and L. Bengtsson, 2002: Secular trends in daily precipitation characteristics: Greenhouse gas simulation with a coupled AOGCM. Climate Dyn., 19, 123140, https://doi.org/10.1007/s00382-001-0218-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shields, C. A., D. A. Bailey, G. Danabasoglu, M. Jochum, J. T. Kiehl, S. Levis, and S. Park, 2012: The low-resolution CCSM4. J. Climate, 25, 39934014, https://doi.org/10.1175/JCLI-D-11-00260.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, D., and Coauthors, 2014: Severe precipitation in northern India in June 2013: Causes, historical context, and changes in probability [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S58S61, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM). CESM Rep. LAUR-10-01853, 141 pp.

  • Sriver, R. L., C. E. Forest, and K. Keller, 2015: Effects of initial conditions uncertainty on regional climate variability: An analysis using a low-resolution CESM ensemble. Geophys. Res. Lett., 42, 54685476, https://doi.org/10.1002/2015GL064546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., S. C. Chapman, and N. W. Watkins, 2013: Mapping climate change in European temperature distributions. Environ. Res. Lett., 8, 034031, https://doi.org/10.1088/1748-9326/8/3/034031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stott, P. A., D. A. Stone, and M. R. Allen, 2004: Human contribution to the European heatwave of 2003. Nature, 432, 610614, https://doi.org/10.1038/nature03089.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swain, D. L., M. Tsiang, M. Haugen, D. Singh, A. Charland, B. Rajaratnam, and N. S. Diffenbaugh, 2014: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change [in “Explaining Extremes of 2013 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 95 (9), S3S7, https://doi.org/10.1175/1520-0477-95.9.S1.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., E. A. Barnes, C. Deser, W. E. Foust, and A. S. Phillips, 2015: Quantifying the role of internal climate variability in future climate trends. J. Climate, 28, 64436456, https://doi.org/10.1175/JCLI-D-14-00830.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2011: Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip. Rev.: Climate Change, 2, 925930, https://doi.org/10.1002/wcc.142.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and T. G. Shepherd, 2015: Attribution of climate extreme events. Nat. Climate Change, 5, 725730, https://doi.org/10.1038/nclimate2657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vega-Westhoff, B., and R. L. Sriver, 2017: Analysis of ENSO’s response to unforced variability and anthropogenic forcing using CESM. Sci. Rep., 7, 18047, https://doi.org/10.1038/s41598-017-18459-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ylhäisi, J. S., and J. Räisänen, 2014: Twenty-first century changes in daily temperature variability in CMIP3 climate models. Int. J. Climatol., 34, 14141428, https://doi.org/10.1002/joc.3773.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1347 387 33
PDF Downloads 1136 314 21