Influence of Surface Topography on the Critical Carbon Dioxide Level Required for the Formation of a Modern Snowball Earth

Yonggang Liu Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yonggang Liu in
Current site
Google Scholar
PubMed
Close
,
W. Richard Peltier Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by W. Richard Peltier in
Current site
Google Scholar
PubMed
Close
,
Jun Yang Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Jun Yang in
Current site
Google Scholar
PubMed
Close
, and
Yongyun Hu Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

Search for other papers by Yongyun Hu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The influence of continental topography on the initiation of a global glaciation (i.e., snowball Earth) is studied with both a fully coupled atmosphere–ocean general circulation model (AOGCM), CCSM3, and an atmospheric general circulation model (AGCM), CAM3 coupled to a slab ocean model. It is found that when the climate is very cold, snow cover over the central region of the Eurasian continent decreases when the atmospheric CO2 concentration (pCO2) is reduced. In the coupled model, this constitutes a negative feedback due to the reduction of land surface albedo that counteracts the positive feedback due to sea ice expansion toward the equator. When the solar insolation is 94% of the present-day value, Earth enters a snowball state when pCO2 is ~35 ppmv. On the other hand, if the continents are assumed to be flat topographically (with the global mean elevation as in the more realistic present-day case), Earth enters a snowball state more easily at pCO2 = ~60 ppmv. Therefore, the presence of topography may increase the stability of Earth against descent into a snowball state. On the contrary, a snowball Earth is found to form much more easily when complex topography is present than when it is not in CAM3. This happens despite the fact that the mid- to high-latitude climate is much warmer (by ~10°C) when topography is present than when it is not. Analyses show that neglecting sea ice dynamics in this model prevents the warming anomaly in the mid- to high latitudes from being efficiently transmitted into the tropics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonggang Liu, ygliu@pku.edu.cn

Abstract

The influence of continental topography on the initiation of a global glaciation (i.e., snowball Earth) is studied with both a fully coupled atmosphere–ocean general circulation model (AOGCM), CCSM3, and an atmospheric general circulation model (AGCM), CAM3 coupled to a slab ocean model. It is found that when the climate is very cold, snow cover over the central region of the Eurasian continent decreases when the atmospheric CO2 concentration (pCO2) is reduced. In the coupled model, this constitutes a negative feedback due to the reduction of land surface albedo that counteracts the positive feedback due to sea ice expansion toward the equator. When the solar insolation is 94% of the present-day value, Earth enters a snowball state when pCO2 is ~35 ppmv. On the other hand, if the continents are assumed to be flat topographically (with the global mean elevation as in the more realistic present-day case), Earth enters a snowball state more easily at pCO2 = ~60 ppmv. Therefore, the presence of topography may increase the stability of Earth against descent into a snowball state. On the contrary, a snowball Earth is found to form much more easily when complex topography is present than when it is not in CAM3. This happens despite the fact that the mid- to high-latitude climate is much warmer (by ~10°C) when topography is present than when it is not. Analyses show that neglecting sea ice dynamics in this model prevents the warming anomaly in the mid- to high latitudes from being efficiently transmitted into the tropics.

© 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yonggang Liu, ygliu@pku.edu.cn
Save
  • Abbot, D. S., I. Eisenman, and R. T. Pierrehumbert, 2010: The importance of ice vertical resolution for snowball climate and deglaciation. J. Climate, 23, 61006109, https://doi.org/10.1175/2010JCLI3693.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., A. Voigt, M. Branson, R. T. Pierrehumbert, D. Pollard, G. Le Hir, and D. D. B. Koll, 2012: Clouds and Snowball Earth deglaciation. Geophys. Res. Lett., 39, L20711, https://doi.org/10.1029/2012GL052861.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahcall, J. N., M. H. Pinsonneault, and S. Basu, 2001: Solar models: Current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J., 555, 9901012, https://doi.org/10.1086/321493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, S. K., and T. J. Crowley, 2001: GCM response to late Precambrian (~590 Ma) ice-covered continents. Geophys. Res. Lett., 28, 583586, https://doi.org/10.1029/2000GL011557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the Community Climate System Model, version 3. NCAR Tech. Note NCAR/TN-463+STR, 70 pp., https://doi.org/10.5065/D6HH6H1P.

    • Crossref
    • Export Citation
  • Budyko, M. I., 1969: Effect of solar radiation variations on climate of Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chandler, M. A., and L. E. Sohl, 2000: Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res., 105, 20 73720 756, https://doi.org/10.1029/2000JD900221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2006: The Community Climate System Model version 3 (CCSM3). J. Climate, 19, 21222143, https://doi.org/10.1175/JCLI3761.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., G. Ramstein, F. Fluteau, J. Besse, and J. Meert, 2002: Is high obliquity a plausible cause for Neoproterozoic glaciations? Geophys. Res. Lett., 29, 2127, https://doi.org/10.1029/2002GL015902.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., Y. Godderis, G. Ramstein, A. Nédélec, and J. Meert, 2004: A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303306, https://doi.org/10.1038/nature02408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feulner, G., and H. Kienert, 2015: Climate simulations of Neoproterozoic snowball Earth events: Similar critical carbon dioxide levels for the Sturtian and Marinoan glaciations. Earth Planet. Sci. Lett., 430, 551552, https://doi.org/10.1016/j.epsl.2015.09.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fiorella, R. P., and C. J. Poulsen, 2013: Dehumidification over tropical continents reduces climate sensitivity and inhibits snowball Earth initiation. J. Climate, 26, 96779695, https://doi.org/10.1175/JCLI-D-12-00820.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galewsky, J., 2009: Rain shadow development during the growth of mountain ranges: An atmospheric dynamics perspective. J. Geophys. Res., 114, F01018, https://doi.org/10.1029/2008JF001085.

    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., 2006: Through thick and thin: Marine and meteoric ice in a “Snowball Earth” climate. Geophys. Res. Lett., 33, L16701, https://doi.org/10.1029/2006GL026840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., and R. T. Pierrehumbert, 2003: Glacial flow of floating marine ice in “Snowball Earth.” J. Geophys. Res., 108, 3308, https://doi.org/10.1029/2002JC001471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., and D. P. Schrag, 2000: Snowball earth. Sci. Amer., 282, 6875, https://doi.org/10.1038/scientificamerican0100-68.

  • Hoffman, P. F., and D. P. Schrag, 2002: The snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129155, https://doi.org/10.1046/j.1365-3121.2002.00408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., A. J. Kaufman, G. P. Halverson, and D. P. Schrag, 1998: A Neoproterozoic snowball Earth. Science, 281, 13421346, https://doi.org/10.1126/science.281.5381.1342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffman, P. F., and Coauthors, 2017: Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv., 3, e1600983, https://doi.org/10.1126/sciadv.1600983.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., T. J. Crowley, S. K. Baum, and W. R. Peltier, 2000: Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425429, https://doi.org/10.1038/35013005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., 2000: Global climate model high-obliquity solutions to the ancient climate puzzles of the Faint-Young Sun Paradox and low-latitude Proterozoic Glaciation. J. Geophys. Res., 105, 73577370, https://doi.org/10.1029/1999JD901125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and L. A. Frakes, 1998: GCM sensitivity test using increased rotation rate, reduced solar forcing and orography to examine low latitude glaciation in the Neoproterozoic. Geophys. Res. Lett., 25, 35253528, https://doi.org/10.1029/98GL52588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jenkins, G. S., and S. R. Smith, 1999: GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophys. Res. Lett., 26, 22632266, https://doi.org/10.1029/1999GL900538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschvink, J. L., 1992: Late Proterozoic low latitude glaciation: The snowball Earth. The Proterozoic Biosphere: A Multi-Disciplinary Study, J. W. Schopf, C. Klein, and D. Des Maris, Eds., Cambridge University Press, 51–52.

  • Lewis, J. P., A. J. Weaver, S. T. Johnston, and M. Eby, 2003: Neoproterozoic “snowball Earth”: Dynamic sea ice over a quiescent ocean. Paleoceanography, 18, 1092, https://doi.org/10.1029/2003PA000926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., M. Eby, A. J. Weaver, S. T. Johnston, and R. L. Jacob, 2004: Global glaciation in the Neoproterozoic: Reconciling previous modelling results. Geophys. Res. Lett., 31, L08201, https://doi.org/10.1029/2004GL019725.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., A. J. Weaver, and M. Eby, 2007: Snowball versus slushball Earth: Dynamic versus nondynamic sea ice? J. Geophys. Res., 112, C11014, https://doi.org/10.1029/2006JC004037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and W. R. Peltier, 2010: A carbon cycle coupled climate model of Neoproterozoic glaciation: Influence of continental configuration on the formation of a “soft snowball.” J. Geophys. Res., 115, D17111, https://doi.org/10.1029/2009JD013082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., and W. R. Peltier, 2011: A carbon cycle coupled climate model of Neoproterozoic glaciation: Explicit carbon cycle with stochastic perturbations. J. Geophys. Res., 116, D02125, https://doi.org/10.1029/2010JD015128.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. R. Peltier, J. Yang, and G. Vettoretti, 2013: The initiation of Neoproterozoic “snowball” climates in CCSM3: The influence of paleocontinental configuration. Climate Past, 9, 25552577, https://doi.org/10.5194/cp-9-2555-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Y., W. R. Peltier, J. Yang, G. Vettoretti, and Y. Wang, 2016: Strong effects of tropical ice-sheet coverage and thickness on the hard snowball Earth bifurcation point. Climate Dyn., 48, 34593474, https://doi.org/10.1007/s00382-016-3278-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oglesby, R. J., and J. G. Ogg, 1999: The effect of large fluctuations in obliquity on climates of the late Proterozoic. Paleoclimates, 2, 293316.

    • Search Google Scholar
    • Export Citation
  • Peltier, W. R., L. Tarasov, G. Vettoretti, and L. P. Solheim, 2004: Climate dynamics in deep time: Modeling the “snowball bifurcation” and assessing the plausibility of its occurrence. The Extreme Proterozoic: Geology, Geochemistry, and Climate, G. S. Jenkins et al., Eds., American Geophysical Union, 107–124.

    • Crossref
    • Export Citation
  • Peltier, W. R., Y. G. Liu, and J. W. Crowley, 2007: Snowball Earth prevention by dissolved organic carbon remineralization. Nature, 450, 813818, https://doi.org/10.1038/nature06354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pollard, D., and J. F. Kasting, 2004: Climate-ice sheet simulations of Neoproterozoic glaciation before and after collapse to snowball Earth. The Extreme Proterozoic: Geology, Geochemistry, and Climate, G. S. Jenkins et al., Eds., Amer. Geophys. Union, 91–105.

    • Crossref
    • Export Citation
  • Pollard, D., and J. F. Kasting, 2005: Snowball Earth: A thin-ice solution with flowing sea glaciers. J. Geophys. Res., 110, C07010, https://doi.org/10.1029/2004JC002525.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and J. F. Kasting, 2006: Reply to comment by Stephen G. Warren and Richard E. Brandt on “Snowball earth: A thin-ice solution with flowing sea glaciers.” J. Geophys. Res., 111, C09017, https://doi.org/10.1029/2006JC003488.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., and R. L. Jacob, 2004: Factors that inhibit snowball Earth simulation. Paleoceanography, 19, PA4021, https://doi.org/10.1029/2004PA001056.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., R. T. Pierrehumbert, and R. L. Jacob, 2001: Impact of ocean dynamics on the simulation of the Neoproterozoic “snowball Earth.” Geophys. Res. Lett., 28, 15751578, https://doi.org/10.1029/2000GL012058.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., R. L. Jacob, R. T. Pierrehumbert, and T. T. Huynh, 2002: Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys. Res. Lett., 29, 1515, https://doi.org/10.1029/2001GL014352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romanova, V., G. Lohmann, and K. Grosfeld, 2006: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Climate Past, 2, 3142, https://doi.org/10.5194/cp-2-31-2006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenbloom, N., C. A. Shields, E. Brady, S. Yeager, and S. Levis, 2011: Using CCSM3 for paleoclimate applications. NCAR Tech. Note NCAR/TN-483+STR, 81 pp., https://doi.org/10.5065/D69S1P09.

    • Crossref
    • Export Citation
  • Schrag, D. P., R. A. Berner, P. F. Hoffman, and G. P. Halverson, 2002: On the initiation of a snowball Earth. Geochem. Geophys. Geosyst., 3 (6), https://doi.org/10.1029/2001GC000219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and J. Marotzke, 2010: The transition from the present-day climate to a modern Snowball Earth. Climate Dyn., 35, 887905, https://doi.org/10.1007/s00382-009-0633-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., and D. S. Abbot, 2012: Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins. Climate Past, 8, 20792092, https://doi.org/10.5194/cp-8-2079-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Voigt, A., D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke, 2011: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere–ocean general circulation model. Climate Past, 7, 249263, https://doi.org/10.5194/cp-7-249-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., W. R. Peltier, and Y. Y. Hu, 2012a: The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part I: The influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization. J. Climate, 25, 27112736, https://doi.org/10.1175/JCLI-D-11-00189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., W. R. Peltier, and Y. Y. Hu, 2012b: The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part II: Climate dynamic feedbacks. J. Climate, 25, 27372754, https://doi.org/10.1175/JCLI-D-11-00190.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, J., W. R. Peltier, and Y. Y. Hu, 2012c: The initiation of modern soft and hard Snowball Earth climates in CCSM4. Climate Past, 8, 907918, https://doi.org/10.5194/cp-8-907-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 875 390 46
PDF Downloads 486 83 13